Skip to main content

Image classification models for PyTorch

Project description

Large-scale image classification networks

Several large-scale image classification models on PyTorch, trained on the ImageNet-1k dataset.

Installation

To install, use:

pip install pytorchcv torch>=0.4.1

To enable/disable different hardware supports such as GPUs, check out PyTorch installation instructions.

Usage

Example of using the pretrained ResNet-18 model:

from pytorchcv.model_provider import get_model as ptcv_get_model
net = ptcv_get_model("resnet18", pretrained=True)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorchcv-0.0.16.tar.gz (49.3 kB view details)

Uploaded Source

Built Distribution

pytorchcv-0.0.16-py2.py3-none-any.whl (95.5 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file pytorchcv-0.0.16.tar.gz.

File metadata

  • Download URL: pytorchcv-0.0.16.tar.gz
  • Upload date:
  • Size: 49.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.18.4 setuptools/39.1.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.6.5

File hashes

Hashes for pytorchcv-0.0.16.tar.gz
Algorithm Hash digest
SHA256 8956d9765f39083f78da9a479b9976433e8aaf918ee4a2bce8f825557630d9a9
MD5 da51193b46ceeceeb305c4e299966fcd
BLAKE2b-256 807528698c5d6e92014792ac16243b5b18098fd79bb4fabc2012cf4b700f3606

See more details on using hashes here.

File details

Details for the file pytorchcv-0.0.16-py2.py3-none-any.whl.

File metadata

  • Download URL: pytorchcv-0.0.16-py2.py3-none-any.whl
  • Upload date:
  • Size: 95.5 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.18.4 setuptools/39.1.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.6.5

File hashes

Hashes for pytorchcv-0.0.16-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 88085a2ef8346b4929ccedfd50c1766f02116049b591608f77db8fff81c276a0
MD5 282fa35e380ae803905af633290e30ed
BLAKE2b-256 8bf684c493b6b7623c1c532834e76df21317380e2fde8911e9d7096054889d29

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page