Skip to main content

Image classification models for PyTorch

Project description

Large-scale image classification networks

Collection of large-scale image classification models on PyTorch, pretrained on the ImageNet-1k dataset.

Installation

To install, use:

pip install pytorchcv torch>=0.4.1

To enable/disable different hardware supports such as GPUs, check out PyTorch installation instructions.

Usage

Example of using the pretrained ResNet-18 model:

from pytorchcv.model_provider import get_model as ptcv_get_model
net = ptcv_get_model("resnet18", pretrained=True)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorchcv-0.0.25.tar.gz (72.8 kB view details)

Uploaded Source

Built Distribution

pytorchcv-0.0.25-py2.py3-none-any.whl (155.5 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file pytorchcv-0.0.25.tar.gz.

File metadata

  • Download URL: pytorchcv-0.0.25.tar.gz
  • Upload date:
  • Size: 72.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.18.4 setuptools/39.1.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.6.5

File hashes

Hashes for pytorchcv-0.0.25.tar.gz
Algorithm Hash digest
SHA256 b1871359a82be554f90659463d407a130cfedbd931b78890edb3588c37c1073b
MD5 cff62f03c3cbdea3a102780449d5b854
BLAKE2b-256 c1793e46248cfb16297048adab37fda4a4b3fd83a51dd8f67827fa5f8a237cbe

See more details on using hashes here.

File details

Details for the file pytorchcv-0.0.25-py2.py3-none-any.whl.

File metadata

  • Download URL: pytorchcv-0.0.25-py2.py3-none-any.whl
  • Upload date:
  • Size: 155.5 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.18.4 setuptools/39.1.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.6.5

File hashes

Hashes for pytorchcv-0.0.25-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 7c817f4d4a7a0bffe15dcf026eca29a52e0a525c198926e165d004c9c2329dfb
MD5 519128d327c926eb660554eb9d20a2f0
BLAKE2b-256 352e679cea3cda10363312914261a7f80eb2f54dd4a292110b629a58107a9e96

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page