Skip to main content

Image classification models for PyTorch

Project description

Large-scale image classification networks

Collection of large-scale image classification models on PyTorch, pretrained on the ImageNet-1k dataset.

Installation

To install, use:

pip install pytorchcv torch>=0.4.1

To enable/disable different hardware supports such as GPUs, check out PyTorch installation instructions.

Usage

Example of using the pretrained ResNet-18 model:

from pytorchcv.model_provider import get_model as ptcv_get_model
net = ptcv_get_model("resnet18", pretrained=True)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorchcv-0.0.31.tar.gz (87.4 kB view details)

Uploaded Source

Built Distribution

pytorchcv-0.0.31-py2.py3-none-any.whl (187.9 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file pytorchcv-0.0.31.tar.gz.

File metadata

  • Download URL: pytorchcv-0.0.31.tar.gz
  • Upload date:
  • Size: 87.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.18.4 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.6.5

File hashes

Hashes for pytorchcv-0.0.31.tar.gz
Algorithm Hash digest
SHA256 aef784f180590313c521f750c43770212193221035a5d2b4f6ae771be196eb27
MD5 43667250a4cb2a8886c8a7e839e89059
BLAKE2b-256 e1130c94b6af2a2d4323424d73530c34d90313cc0f2a4366791be8ca0a5f41b3

See more details on using hashes here.

File details

Details for the file pytorchcv-0.0.31-py2.py3-none-any.whl.

File metadata

  • Download URL: pytorchcv-0.0.31-py2.py3-none-any.whl
  • Upload date:
  • Size: 187.9 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.18.4 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.6.5

File hashes

Hashes for pytorchcv-0.0.31-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 7ce421a0bc01ffbd901087c92994f72d0700ae1c6e283e07d622cd3fda42a81e
MD5 092b7501b33def7f7b4a5e4ae7a6fe13
BLAKE2b-256 d81ea337328b699b88b0f3c27587d5fe2d66df0c84ce1340f67d776ad963eeb2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page