Skip to main content

Image classification models for PyTorch

Project description

Large-scale image classification networks

Several large-scale image classification models on PyTorch, trained on the ImageNet-1k dataset.

Installation

To install, use:

pip install pytorchcv torch>=0.4.1

To enable/disable different hardware supports such as GPUs, check out PyTorch installation instructions.

Usage

Example of using the pretrained ResNet-18 model:

from pytorchcv.model_provider import get_model as ptcv_get_model
net = ptcv_get_model("resnet18", pretrained=True)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorchcv-0.0.8.tar.gz (34.2 kB view details)

Uploaded Source

Built Distribution

pytorchcv-0.0.8-py2.py3-none-any.whl (62.2 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file pytorchcv-0.0.8.tar.gz.

File metadata

  • Download URL: pytorchcv-0.0.8.tar.gz
  • Upload date:
  • Size: 34.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.6.5

File hashes

Hashes for pytorchcv-0.0.8.tar.gz
Algorithm Hash digest
SHA256 90d337b2e7109901f1921be10a22169c0c3136f436da2819256a09f6aa633413
MD5 27595925b82c63aff97c40254b55a0cf
BLAKE2b-256 32566a9c0d808541d8080749a6f47610a8dc2c107d2886f8a6dc433f5ea82008

See more details on using hashes here.

File details

Details for the file pytorchcv-0.0.8-py2.py3-none-any.whl.

File metadata

  • Download URL: pytorchcv-0.0.8-py2.py3-none-any.whl
  • Upload date:
  • Size: 62.2 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.6.5

File hashes

Hashes for pytorchcv-0.0.8-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 80683f31a6b0306bae1a601dc3a3c61cba6b5ea6d1e30a083b93716fc9626449
MD5 5f3c9a8766fabf0410e806683ddb9407
BLAKE2b-256 d57ec3ca057728c771b8263580178a0c78458040304d9e0f2bd4ee30504419a3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page