Skip to main content

Image classification models for PyTorch

Project description

Large-scale image classification networks

Several large-scale image classification models on PyTorch, trained on the ImageNet-1k dataset.

Installation

To install, use:

pip install pytorchcv torch>=0.4.1

To enable/disable different hardware supports such as GPUs, check out PyTorch installation instructions.

Usage

Example of using the pretrained ResNet-18 model:

from pytorchcv.model_provider import get_model as ptcv_get_model
net = ptcv_get_model("resnet18", pretrained=True)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorchcv-0.0.9.tar.gz (34.6 kB view details)

Uploaded Source

Built Distribution

pytorchcv-0.0.9-py2.py3-none-any.whl (63.4 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file pytorchcv-0.0.9.tar.gz.

File metadata

  • Download URL: pytorchcv-0.0.9.tar.gz
  • Upload date:
  • Size: 34.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.18.4 setuptools/39.1.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.6.5

File hashes

Hashes for pytorchcv-0.0.9.tar.gz
Algorithm Hash digest
SHA256 5fce21f00d357a5d6b5231007b5b8e6280448fd0b7e8372fa354b9058a4e71e7
MD5 51094122c74e3dd30317bc5e385c352b
BLAKE2b-256 8867a43a0b4389f2dce40ec399fab209511d44262e86b9117ff68ead225225d6

See more details on using hashes here.

File details

Details for the file pytorchcv-0.0.9-py2.py3-none-any.whl.

File metadata

  • Download URL: pytorchcv-0.0.9-py2.py3-none-any.whl
  • Upload date:
  • Size: 63.4 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.18.4 setuptools/39.1.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.6.5

File hashes

Hashes for pytorchcv-0.0.9-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 7bc27c46ddb713bd260401cf32167f49cb7c7161402f628db5602e864b3c1a72
MD5 9499673223f7961a873fe222decc0b87
BLAKE2b-256 3ab07994835f716862a1d87845c847a987b1e930e37553c06ce25bf30d547dfe

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page