Skip to main content

Code for weakly supervised learning

Project description

Copyright (c) 2017 t-sakai-kure

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Description-Content-Type: UNKNOWN
Description: # pywsl: **py**thon codes for **w**eakly-**s**upervised **l**earning

[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
[![Build Status](https://travis-ci.org/t-sakai-kure/pywsl.svg?branch=master)](https://travis-ci.org/t-sakai-kure/pywsl)
[![PyPI version](https://badge.fury.io/py/pywsl.svg)](https://badge.fury.io/py/pywsl)

This package contains the following implementation:
- ***Unbiased PU learning***
    in "Convex formulation for learning from positive and unlabeled data", ICML, 2015 [[uPU]](#uPU)
- ***Non-negative PU Learning***
    in "Positive-unlabeled learning with non-negative risk estimator", NIPS, 2017 [[nnPU]](#nnPU)
- ***PU Set Kernel Classifier***
    in "Convex formulation of multiple instance learning from positive and unlabeled bags", Neural Networks, 2018 [[PU-SKC]](#pu-skc)
- ***Class-prior estimation based on energy distance***
    in "Computationally efficient class-prior estimation under class balance change using energy distance", IEICE-ED, 2016 [[CPE-ENE]](#cpe_ene).
- ***PNU classification***
    in "Semi-supervised classification based on classification from positive and unlabeled data", ICML 2017 [[PNU]](#pnu_mr).
- ***PNU-AUC optimization***
    in "Semi-supervised AUC optimization based on positive-unlabeled learning", MLJ 2018 [[PNU-AUC]](#pnu_auc).

## Installation
```sh
$ pip install pywsl
```

## Main contributors
- [Tomoya Sakai](https://t-sakai-kure.github.io)
- [Han Bao](http://levelfour.github.io)
- [Ryuichi Kiryo](https://github.com/kiryor)

## References
1. <a name="uPU"> du Plessis, M. C., Niu, G., and Sugiyama, M.  
Convex formulation for learning from positive and unlabeled data.
In Bach, F. and Blei, D. (Eds.), Proceedings of 32nd International Conference on Machine Learning,
JMLR Workshop and Conference Proceedings, vol.37, pp.1386-1394, Lille, France, Jul. 6-11, 2015.
1. <a name="nnPU"> Kiryo, R., Niu, G., du Plessis, M. C., and Sugiyama, M.
Positive-unlabeled learning with non-negative risk estimator.
In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R. (Eds.),
Advances in Neural Information Processing Systems 30, pp.1674-1684, 2017.
1. <a name="pu-skc"> Bao, H., Sakai, T., Sato, I., and Sugiyama, M.
Convex formulation of multiple instance learning from positive and unlabeled bags.
Neural Networks, vol.105, pp.132-141, 2018.
1. <a name="cpe_ene"> Kawakubo, H., du Plessis, M. C., and Sugiyama, M.
Computationally efficient class-prior estimation under class balance change using energy distance.
IEICE Transactions on Information and Systems, vol.E99-D, no.1, pp.176-186, 2016.
1. <a name="pnu_mr"> Sakai, T., du Plessis, M. C., Niu, G., and Sugiyama, M.
Semi-supervised classification based on classification from positive and unlabeled data.
In Precup, D. and Teh, Y. W. (Eds.), Proceedings of 34th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol.70, pp.2998-3006, Sydney, Australia, Aug. 6-12, 2017.
1. <a name="pnu_auc"> Sakai, T., Niu, G., and Sugiyama, M.
Semi-supervised AUC optimization based on positive-unlabeled learning.
Machine Learning, vol.107, no.4, pp.767-794, 2018.

Platform: UNKNOWN
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: Education
Classifier: Intended Audience :: Science/Research
Classifier: License :: OSI Approved :: MIT License
Classifier: Programming Language :: Python :: 3.6
Classifier: Topic :: Software Development :: Libraries :: Python Modules

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pywsl-0.1.3.tar.gz (15.3 kB view details)

Uploaded Source

Built Distribution

pywsl-0.1.3-py3-none-any.whl (22.9 kB view details)

Uploaded Python 3

File details

Details for the file pywsl-0.1.3.tar.gz.

File metadata

  • Download URL: pywsl-0.1.3.tar.gz
  • Upload date:
  • Size: 15.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.4.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.6.4

File hashes

Hashes for pywsl-0.1.3.tar.gz
Algorithm Hash digest
SHA256 3fae02c669447ae6d356881910ebe2d50ec1858b90b051d7d4fd1acc73befc13
MD5 869a07976e5be8c1efcb0eb07fe21ef9
BLAKE2b-256 75bded8d48fde24d5357c6ec761914bfe207f59356bf728ce10689eb8879a3c4

See more details on using hashes here.

File details

Details for the file pywsl-0.1.3-py3-none-any.whl.

File metadata

  • Download URL: pywsl-0.1.3-py3-none-any.whl
  • Upload date:
  • Size: 22.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.44.1 CPython/3.7.7

File hashes

Hashes for pywsl-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 9e83b325771d8451e6dd1c077dbd8e693ffd212dd75a2b81ef12a1d2bf231e08
MD5 a407257a32209cfae8b43df2c24844a3
BLAKE2b-256 b6cf9be0ac03f058145a729cfda8f5207a10c856767f451baee3399c76d8d99f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page