Skip to main content

Qiskit-Torch-Module: Fast Prototyping of Quantum Neural Networks

Project description

Comprehensive Library of Variational LSE Solvers

This repo contains the code for the qiskit-torch-module introduced in "Qiskit-Torch-Module: Fast Prototyping of Quantum Neural Networks", N. Meyer et al. (2024).

Setup and Installation

The library requires an installation of python 3.12, and following libraries:

  • qiskit~=1.0.0, backward compatible up to qiskit v0.44.0
  • qiskit-algorithms~=0.3.0
  • torch~=2.2.1
  • threadpoolctl~=3.3.0

We recommend setting up a conda environment:

conda create --name ENV_NAME python=3.12
conda activate ENV_NAME

The package qiskit-torch-module can be installed locally via:

pip install qiskit-torch-module

Usage and Further Information

For further usage details and examples please refer to the repository https://github.com/nicomeyer96/qiskit-torch-module

Acknowledgements

The backbone of our implementation is the qiskit software framework: https://github.com/Qiskit

Furthermore, we git inspired by qiskit-machine-learning: https://github.com/qiskit-community/qiskit-machine-learning

Citation

If you use the qiskit-torch-module or results from the paper, please cite "Qiskit-Torch-Module: Fast Prototyping of Quantum Neural Networks", N. Meyer et al. (2024).

Version History

Initial release (v1.0): April 2024

License

Apache 2.0 License

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

qiskit-torch-module-1.0.tar.gz (29.4 kB view details)

Uploaded Source

Built Distribution

qiskit_torch_module-1.0-py3-none-any.whl (41.0 kB view details)

Uploaded Python 3

File details

Details for the file qiskit-torch-module-1.0.tar.gz.

File metadata

  • Download URL: qiskit-torch-module-1.0.tar.gz
  • Upload date:
  • Size: 29.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for qiskit-torch-module-1.0.tar.gz
Algorithm Hash digest
SHA256 79c2c8800e3127dc8a9ab53aea7c9fd2c22776b780d99d264650700f654da3d2
MD5 b8f7770c0ac1cff7776fe142c0e070ca
BLAKE2b-256 0b7b72a4beb810e8b5cb314b769d5006e172bd5d3b3f0ae1c5976cd7bf8701bc

See more details on using hashes here.

File details

Details for the file qiskit_torch_module-1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for qiskit_torch_module-1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 61ae8c96fd5d33b1529670ed6968e23bbd59e93997a5290bc4f541f7d46bf6c4
MD5 286d9923caccb1208886d11a512de554
BLAKE2b-256 9a54f1c9580d43e3c3d022fdd5e79eb2ae5ce67f3a56228ab6697bee4ea2a805

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page