Skip to main content

No project description provided

Project description

QRev Instructor

QRev Instructor is a Python wrapper around the instructor module, providing a unified interface for working with different language models from OpenAI and Anthropic.

Features

  • Supports both OpenAI and Anthropic models
  • Easy-to-use client initialization
  • Automatic model type detection
  • Case-insensitive enum handling
  • Extensible for other API types

Installation

To install QRev Instructor, use pip:

pip install qrev-instructor

For Anthropic (Claude models)

pip install qrev-instructor[anthropic]

Usage

Here's a basic example of how to use QRev Instructor:

from qrev_instructor import get_client
from pydantic import BaseModel

class User(BaseModel):
    name: str
    age: int

model_name="gpt-3.5-turbo" # for OpenAI
# model_name="claude-3-haiku-20240307" # uncomment for Anthropic

# Initialize the client
client = get_client(model=model_name)

# Use the client to create a response
response = client.messages.create(
    model=model_name,
    messages=[
        {
            "role": "user",
            "content": "Jason is 25 years old.",
        }
    ],
    response_model=User
)

print(f"Name: {response.name}, Age: {response.age}")
# prints "Name: Jason, Age: 25"

Supported Models

Anthropic Models:

  • CLAUDE_3_OPUS_20240229 = "claude-3-opus-20240229"
  • CLAUDE_3_HAIKU_20240307 = "claude-3-haiku-20240307"
  • CLAUDE_3_5_SONNET_20240620 = "claude-3-5-sonnet-20240620"
  • CLAUDE_3_SONNET_20240229 = "claude-3-sonnet-20240229"

OpenAI Models:

  • GPT_3_5_TURBO_0125 = "gpt-3.5-turbo-0125"
  • GPT_3_5_TURBO = "gpt-3.5-turbo"
  • GPT_3_5_TURBO_INSTRUCT = "gpt-3.5-turbo-instruct"
  • GPT_4 = "gpt-4"
  • GPT_4O = "gpt-4o"
  • GPT_4O_2024_05_13 = "gpt-4o-2024-05-13"
  • DAVINCI = "davinci"
  • CURIE = "curie"

Testing

The package includes pytest-based tests for both OpenAI and Anthropic clients. To run the tests:

make test

Dependencies

  • instructor
  • anthropic (optional, for Anthropic models)
  • pydantic

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

qrev_instructor-0.5.8.tar.gz (4.7 kB view details)

Uploaded Source

Built Distribution

qrev_instructor-0.5.8-py3-none-any.whl (6.4 kB view details)

Uploaded Python 3

File details

Details for the file qrev_instructor-0.5.8.tar.gz.

File metadata

  • Download URL: qrev_instructor-0.5.8.tar.gz
  • Upload date:
  • Size: 4.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.11.9 Darwin/23.0.0

File hashes

Hashes for qrev_instructor-0.5.8.tar.gz
Algorithm Hash digest
SHA256 4012f0b4932a399d6c9a7a01ba3da714ce13ab9ed7d8f2585add0651d9b3deed
MD5 21798c46f07b1efa896a3a8fb64e74ae
BLAKE2b-256 f17145a74dbe0b4177d3b646bd3f77ab6758abab6c5047512cf5f84f69f3466d

See more details on using hashes here.

File details

Details for the file qrev_instructor-0.5.8-py3-none-any.whl.

File metadata

  • Download URL: qrev_instructor-0.5.8-py3-none-any.whl
  • Upload date:
  • Size: 6.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.11.9 Darwin/23.0.0

File hashes

Hashes for qrev_instructor-0.5.8-py3-none-any.whl
Algorithm Hash digest
SHA256 d4880e8017371452563d70abe127cc3fd480ab7da44f3463b3e34bb8e7e56baf
MD5 217acc0e93f33cf46781547a0e80b1a6
BLAKE2b-256 09c64cb4addf484a625d42b1fcf59ec007d4e52ff509cae2a30aacbd2324d165

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page