Data science toolkit (TK) from Quality-Safety research Institute (QSI).
Project description
qsi-tk
Data science toolkit (TK) from Quality-Safety research Institute (QSI)
Installation
pip install qsi-tk
Contents
This package is a master library containing various previous packages published by our team.
module | sub-module | description | standalone pypi package | publication |
qsi.io | File I/O, Dataset loading | TODO qsi-tk open datasets with algorithms | ||
qsi.io.aug | Data augmentation, e.g., generative models | TODO Data aug with deep generative models. e.g., " variational autoencoders, generative adversarial networks, autoregressive models, normalizing flow models, energy-based models, and score-based models. " | ||
qsi.vis | Plotting | |||
qsi.cs | compressed sensing | cs1 | Adaptive compressed sensing of Raman spectroscopic profiling data for discriminative tasks [J]. Talanta, 2020, doi: 10.1016/j.talanta.2019.120681
Task-adaptive eigenvector-based projection (EBP) transform for compressed sensing: A case study of spectroscopic profiling sensor [J]. Analytical Science Advances. Chemistry Europe, 2021, doi: 10.1002/ansa.202100018 |
|
qsi.fs | feature selection | |||
qsi.ks | kernels | ackl | TODO | |
qsi.dr | qsi.dr.metrics | Dimensionality Reduction (DR) quality metrics | pyDRMetrics, wDRMetrics | pyDRMetrics - A Python toolkit for dimensionality reduction quality assessment, Heliyon, Volume 7, Issue 2, 2021, e06199, ISSN 2405-8440, doi: 10.1016/j.heliyon.2021.e06199. |
qsi.dr.mf | matrix-factorization based DR | pyMFDR | Matrix Factorization Based Dimensionality Reduction Algorithms - A Comparative Study on Spectroscopic Profiling Data [J], Analytical Chemistry, 2022. doi: 10.1021/acs.analchem.2c01922 | |
qsi.cla | qsi.cla.metrics | classifiability analysis | pyCLAMs, wCLAMs | A unified classifiability analysis framework based on meta-learner and its application in spectroscopic profiling data [J]. Applied Intelligence, 2021, doi: 10.1007/s10489-021-02810-8
pyCLAMs: An integrated Python toolkit for classifiability analysis [J]. SoftwareX, 2022, doi: 10.1016/j.softx.2022.101007 |
qsi.cla.ensemble | homo-stacking, hetero-stacking, FSSE | pyNNRW | Spectroscopic Profiling-based Geographic Herb Identification by Neural Network with Random Weights [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, doi: 10.1016/j.saa.2022.121348 | |
qsi.cla.kernel | kernel-NNRW | |||
qsi.cla.nnrw | neural networks with random weights | |||
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
qsi-tk-0.2.0.tar.gz
(40.3 MB
view details)
Built Distribution
qsi_tk-0.2.0-py3-none-any.whl
(40.5 MB
view details)
File details
Details for the file qsi-tk-0.2.0.tar.gz
.
File metadata
- Download URL: qsi-tk-0.2.0.tar.gz
- Upload date:
- Size: 40.3 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | bd4755657e7d21134a1f0d5bf00dd0cf4e3425d4cae82ae4105fb3fdfe54b334 |
|
MD5 | 63bef070bf78d597aa1958f83dbec86b |
|
BLAKE2b-256 | 67409d9dc7eaba91cc5a66e42b2143e0fc906a67ae5ca978a36bdcbae1e7746f |
File details
Details for the file qsi_tk-0.2.0-py3-none-any.whl
.
File metadata
- Download URL: qsi_tk-0.2.0-py3-none-any.whl
- Upload date:
- Size: 40.5 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ce20958114475112f37347a90c7a9a88537a3f3048faa2b9bc9fa2bf4ea46eed |
|
MD5 | 9beb17e9a771f84c70d6883ae9d13f12 |
|
BLAKE2b-256 | 13e206d62c4ea0a8072a0ce67092404431b924468cc9b3afecaed6be902f4565 |