Skip to main content

Data science toolkit (TK) from Quality-Safety research Institute (QSI).

Project description

qsi-tk

Data science toolkit (TK) from Quality-Safety research Institute (QSI)

Installation

pip install qsi-tk

Contents

This package is a master library containing various previous packages published by our team.

module sub-module description standalone pypi package publication
qsi.io File I/O, Dataset loading TODO qsi-tk open datasets with algorithms
qsi.io.aug Data augmentation, e.g., generative models TODO Data aug with deep generative models. e.g., " variational autoencoders, generative adversarial networks, autoregressive models, normalizing flow models, energy-based models, and score-based models. "
qsi.vis Plotting
qsi.cs compressed sensing cs1 Adaptive compressed sensing of Raman spectroscopic profiling data for discriminative tasks [J]. Talanta, 2020, doi: 10.1016/j.talanta.2019.120681
Task-adaptive eigenvector-based projection (EBP) transform for compressed sensing: A case study of spectroscopic profiling sensor [J]. Analytical Science Advances. Chemistry Europe, 2021, doi: 10.1002/ansa.202100018
qsi.fs feature selection
qsi.ks kernels ackl TODO
qsi.dr qsi.dr.metrics Dimensionality Reduction (DR) quality metrics pyDRMetrics, wDRMetrics pyDRMetrics - A Python toolkit for dimensionality reduction quality assessment, Heliyon, Volume 7, Issue 2, 2021, e06199, ISSN 2405-8440, doi: 10.1016/j.heliyon.2021.e06199.
qsi.dr.mf matrix-factorization based DR pyMFDR Matrix Factorization Based Dimensionality Reduction Algorithms - A Comparative Study on Spectroscopic Profiling Data [J], Analytical Chemistry, 2022. doi: 10.1021/acs.analchem.2c01922
qsi.cla qsi.cla.metrics classifiability analysis pyCLAMs, wCLAMs A unified classifiability analysis framework based on meta-learner and its application in spectroscopic profiling data [J]. Applied Intelligence, 2021, doi: 10.1007/s10489-021-02810-8
pyCLAMs: An integrated Python toolkit for classifiability analysis [J]. SoftwareX, 2022, doi: 10.1016/j.softx.2022.101007
qsi.cla.ensemble homo-stacking, hetero-stacking, FSSE pyNNRW Spectroscopic Profiling-based Geographic Herb Identification by Neural Network with Random Weights [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, doi: 10.1016/j.saa.2022.121348
qsi.cla.kernel kernel-NNRW
qsi.cla.nnrw neural networks with random weights

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

qsi-tk-0.2.0.tar.gz (40.3 MB view details)

Uploaded Source

Built Distribution

qsi_tk-0.2.0-py3-none-any.whl (40.5 MB view details)

Uploaded Python 3

File details

Details for the file qsi-tk-0.2.0.tar.gz.

File metadata

  • Download URL: qsi-tk-0.2.0.tar.gz
  • Upload date:
  • Size: 40.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for qsi-tk-0.2.0.tar.gz
Algorithm Hash digest
SHA256 bd4755657e7d21134a1f0d5bf00dd0cf4e3425d4cae82ae4105fb3fdfe54b334
MD5 63bef070bf78d597aa1958f83dbec86b
BLAKE2b-256 67409d9dc7eaba91cc5a66e42b2143e0fc906a67ae5ca978a36bdcbae1e7746f

See more details on using hashes here.

File details

Details for the file qsi_tk-0.2.0-py3-none-any.whl.

File metadata

  • Download URL: qsi_tk-0.2.0-py3-none-any.whl
  • Upload date:
  • Size: 40.5 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for qsi_tk-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 ce20958114475112f37347a90c7a9a88537a3f3048faa2b9bc9fa2bf4ea46eed
MD5 9beb17e9a771f84c70d6883ae9d13f12
BLAKE2b-256 13e206d62c4ea0a8072a0ce67092404431b924468cc9b3afecaed6be902f4565

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page