Data science toolkit (TK) from Quality-Safety research Institute (QSI).
Project description
qsi-tk
Data science toolkit (TK) from Quality-Safety research Institute (QSI)
Installation
pip install qsi-tk
Contents
This package is a master library containing various previous packages published by our team.
module | sub-module | description | standalone pypi package | publication |
qsi.io | File I/O, Dataset loading | TODO qsi-tk open datasets with algorithms | ||
qsi.io.aug | Data augmentation, e.g., generative models | TODO Data aug with deep generative models. e.g., " variational autoencoders, generative adversarial networks, autoregressive models, normalizing flow models, energy-based models, and score-based models. " | ||
qsi.io.pre | Spectroscopic profiling data processing | TODO qsi.io.pre.x_binning, qsi.io.pre.x_baseline_removal, etc. | ||
qsi.vis | Plotting | |||
qsi.cs | compressed sensing | cs1 | Adaptive compressed sensing of Raman spectroscopic profiling data for discriminative tasks [J]. Talanta, 2020, doi: 10.1016/j.talanta.2019.120681
Task-adaptive eigenvector-based projection (EBP) transform for compressed sensing: A case study of spectroscopic profiling sensor [J]. Analytical Science Advances. Chemistry Europe, 2021, doi: 10.1002/ansa.202100018 Compressed Sensing library for spectroscopic profiling data [J]. Software Impacts, 2023, doi: 10.1016/j.simpa.2023.100492 |
|
qsi.fs | feature selection | |||
qsi.ks | kernels | ackl | TODO | |
qsi.dr | qsi.dr.metrics | Dimensionality Reduction (DR) quality metrics | pyDRMetrics, wDRMetrics | pyDRMetrics - A Python toolkit for dimensionality reduction quality assessment, Heliyon, Volume 7, Issue 2, 2021, e06199, ISSN 2405-8440, doi: 10.1016/j.heliyon.2021.e06199. |
qsi.dr.mf | matrix-factorization based DR | pyMFDR | Matrix Factorization Based Dimensionality Reduction Algorithms - A Comparative Study on Spectroscopic Profiling Data [J], Analytical Chemistry, 2022. doi: 10.1021/acs.analchem.2c01922 | |
qsi.cla | qsi.cla.metrics | classifiability analysis | pyCLAMs, wCLAMs | A unified classifiability analysis framework based on meta-learner and its application in spectroscopic profiling data [J]. Applied Intelligence, 2021, doi: 10.1007/s10489-021-02810-8
pyCLAMs: An integrated Python toolkit for classifiability analysis [J]. SoftwareX, 2022, doi: 10.1016/j.softx.2022.101007 |
qsi.cla.ensemble | homo-stacking, hetero-stacking, FSSE | pyNNRW | Spectroscopic Profiling-based Geographic Herb Identification by Neural Network with Random Weights [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, doi: 10.1016/j.saa.2022.121348 | |
qsi.cla.kernel | kernel-NNRW | |||
qsi.cla.nnrw | neural networks with random weights | |||
qsi.pipeline | General data analysis pipelines. |
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
qsi-tk-0.4.3.tar.gz
(53.9 MB
view details)
Built Distribution
qsi_tk-0.4.3-py3-none-any.whl
(54.2 MB
view details)
File details
Details for the file qsi-tk-0.4.3.tar.gz
.
File metadata
- Download URL: qsi-tk-0.4.3.tar.gz
- Upload date:
- Size: 53.9 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d65a948fae90d97f37276fed025dd651d969e3d0daf390562bc99e4490a374ae |
|
MD5 | fbe26d826b3026a968728393b2c82267 |
|
BLAKE2b-256 | c7745e1ab410748a4d52a07a2ac4042da2e3c837a65eee495c3e56f859190426 |
File details
Details for the file qsi_tk-0.4.3-py3-none-any.whl
.
File metadata
- Download URL: qsi_tk-0.4.3-py3-none-any.whl
- Upload date:
- Size: 54.2 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 51cedaa5e3c84105e21de11d250c6ae37b6bbba71847900031a04834b93510b1 |
|
MD5 | 8e99ca6b7ec01288f3751b8cbaef49f1 |
|
BLAKE2b-256 | 76478404da07dfc713876f1a7b84520030b7e985218951bf51e80207f5a1bcab |