Skip to main content

Data science toolkit (TK) from Quality-Safety research Institute (QSI).

Project description

qsi-tk

Data science toolkit (TK) from Quality-Safety research Institute (QSI)

Installation

pip install qsi-tk

Contents

This package is a master library containing various previous packages published by our team.

module sub-module description standalone pypi package publication
qsi.io File I/O, Dataset loading TODO qsi-tk open datasets with algorithms
qsi.io.aug Data augmentation, e.g., generative models TODO Data aug with deep generative models. e.g., " variational autoencoders, generative adversarial networks, autoregressive models, normalizing flow models, energy-based models, and score-based models. "
qsi.io.pre Spectroscopic profiling data processing TODO qsi.io.pre.x_binning, qsi.io.pre.x_baseline_removal, etc.
qsi.vis Plotting
qsi.cs compressed sensing cs1 Adaptive compressed sensing of Raman spectroscopic profiling data for discriminative tasks [J]. Talanta, 2020, doi: 10.1016/j.talanta.2019.120681
Task-adaptive eigenvector-based projection (EBP) transform for compressed sensing: A case study of spectroscopic profiling sensor [J]. Analytical Science Advances. Chemistry Europe, 2021, doi: 10.1002/ansa.202100018
Compressed Sensing library for spectroscopic profiling data [J]. Software Impacts, 2023, doi: 10.1016/j.simpa.2023.100492
qsi.fs feature selection
qsi.ks kernels ackl TODO
qsi.dr qsi.dr.metrics Dimensionality Reduction (DR) quality metrics pyDRMetrics, wDRMetrics pyDRMetrics - A Python toolkit for dimensionality reduction quality assessment, Heliyon, Volume 7, Issue 2, 2021, e06199, ISSN 2405-8440, doi: 10.1016/j.heliyon.2021.e06199.
qsi.dr.mf matrix-factorization based DR pyMFDR Matrix Factorization Based Dimensionality Reduction Algorithms - A Comparative Study on Spectroscopic Profiling Data [J], Analytical Chemistry, 2022. doi: 10.1021/acs.analchem.2c01922
qsi.cla qsi.cla.metrics classifiability analysis pyCLAMs, wCLAMs A unified classifiability analysis framework based on meta-learner and its application in spectroscopic profiling data [J]. Applied Intelligence, 2021, doi: 10.1007/s10489-021-02810-8
pyCLAMs: An integrated Python toolkit for classifiability analysis [J]. SoftwareX, 2022, doi: 10.1016/j.softx.2022.101007
qsi.cla.ensemble homo-stacking, hetero-stacking, FSSE pyNNRW Spectroscopic Profiling-based Geographic Herb Identification by Neural Network with Random Weights [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, doi: 10.1016/j.saa.2022.121348
qsi.cla.kernel kernel-NNRW
qsi.cla.nnrw neural networks with random weights
qsi.pipeline General data analysis pipelines.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

qsi-tk-0.4.3.tar.gz (53.9 MB view details)

Uploaded Source

Built Distribution

qsi_tk-0.4.3-py3-none-any.whl (54.2 MB view details)

Uploaded Python 3

File details

Details for the file qsi-tk-0.4.3.tar.gz.

File metadata

  • Download URL: qsi-tk-0.4.3.tar.gz
  • Upload date:
  • Size: 53.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for qsi-tk-0.4.3.tar.gz
Algorithm Hash digest
SHA256 d65a948fae90d97f37276fed025dd651d969e3d0daf390562bc99e4490a374ae
MD5 fbe26d826b3026a968728393b2c82267
BLAKE2b-256 c7745e1ab410748a4d52a07a2ac4042da2e3c837a65eee495c3e56f859190426

See more details on using hashes here.

File details

Details for the file qsi_tk-0.4.3-py3-none-any.whl.

File metadata

  • Download URL: qsi_tk-0.4.3-py3-none-any.whl
  • Upload date:
  • Size: 54.2 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for qsi_tk-0.4.3-py3-none-any.whl
Algorithm Hash digest
SHA256 51cedaa5e3c84105e21de11d250c6ae37b6bbba71847900031a04834b93510b1
MD5 8e99ca6b7ec01288f3751b8cbaef49f1
BLAKE2b-256 76478404da07dfc713876f1a7b84520030b7e985218951bf51e80207f5a1bcab

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page