Skip to main content

Data science toolkit (TK) from Quality-Safety research Institute (QSI).

Project description

qsi-tk

Data science toolkit (TK) from Quality-Safety research Institute (QSI)

Installation

pip install qsi-tk

Contents

This package is a master library containing various previous packages published by our team.

module sub-module description standalone pypi package publication
qsi.io File I/O, Dataset loading TODO qsi-tk open datasets with algorithms
qsi.io.aug Data augmentation, e.g., generative models TODO Data aug with deep generative models. e.g., " variational autoencoders, generative adversarial networks, autoregressive models, normalizing flow models, energy-based models, and score-based models. "
qsi.io.pre Spectroscopic profiling data processing TODO qsi.io.pre.x_binning, qsi.io.pre.x_baseline_removal, etc.
qsi.vis Plotting
qsi.cs compressed sensing cs1 Adaptive compressed sensing of Raman spectroscopic profiling data for discriminative tasks [J]. Talanta, 2020, doi: 10.1016/j.talanta.2019.120681
Task-adaptive eigenvector-based projection (EBP) transform for compressed sensing: A case study of spectroscopic profiling sensor [J]. Analytical Science Advances. Chemistry Europe, 2021, doi: 10.1002/ansa.202100018
Compressed Sensing library for spectroscopic profiling data [J]. Software Impacts, 2023, doi: 10.1016/j.simpa.2023.100492
qsi.fs feature selection
qsi.ks kernels ackl TODO
qsi.dr qsi.dr.metrics Dimensionality Reduction (DR) quality metrics pyDRMetrics, wDRMetrics pyDRMetrics - A Python toolkit for dimensionality reduction quality assessment, Heliyon, Volume 7, Issue 2, 2021, e06199, ISSN 2405-8440, doi: 10.1016/j.heliyon.2021.e06199.
qsi.dr.mf matrix-factorization based DR pyMFDR Matrix Factorization Based Dimensionality Reduction Algorithms - A Comparative Study on Spectroscopic Profiling Data [J], Analytical Chemistry, 2022. doi: 10.1021/acs.analchem.2c01922
qsi.cla qsi.cla.metrics classifiability analysis pyCLAMs, wCLAMs A unified classifiability analysis framework based on meta-learner and its application in spectroscopic profiling data [J]. Applied Intelligence, 2021, doi: 10.1007/s10489-021-02810-8
pyCLAMs: An integrated Python toolkit for classifiability analysis [J]. SoftwareX, 2022, doi: 10.1016/j.softx.2022.101007
qsi.cla.ensemble homo-stacking, hetero-stacking, FSSE pyNNRW Spectroscopic Profiling-based Geographic Herb Identification by Neural Network with Random Weights [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, doi: 10.1016/j.saa.2022.121348
qsi.cla.kernel kernel-NNRW
qsi.cla.nnrw neural networks with random weights
qsi.pipeline General data analysis pipelines.
qsi.gui Web-based apps. e.g., `python -m qsi.gui.chaihu` will launch the app for bupleurum origin discrimination.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

qsi-tk-0.4.4.tar.gz (57.6 MB view details)

Uploaded Source

Built Distribution

qsi_tk-0.4.4-py3-none-any.whl (57.9 MB view details)

Uploaded Python 3

File details

Details for the file qsi-tk-0.4.4.tar.gz.

File metadata

  • Download URL: qsi-tk-0.4.4.tar.gz
  • Upload date:
  • Size: 57.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for qsi-tk-0.4.4.tar.gz
Algorithm Hash digest
SHA256 5aa5503989b9e3ef0a63d3453fd2103bc5bd5335b1e34e8970809e951acfdb87
MD5 65e255e363e8379988cee3a43727df9f
BLAKE2b-256 b461da6b211a4b4911a821c6c726cce9b16165c894fe921de05573a85c92b6a2

See more details on using hashes here.

File details

Details for the file qsi_tk-0.4.4-py3-none-any.whl.

File metadata

  • Download URL: qsi_tk-0.4.4-py3-none-any.whl
  • Upload date:
  • Size: 57.9 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for qsi_tk-0.4.4-py3-none-any.whl
Algorithm Hash digest
SHA256 10661d8b1aad7d926e7bec7bc8ca0b227860184be08dd21283fd6bbd439a9d29
MD5 b1ab7c723d85634af339d6e2b11f098f
BLAKE2b-256 887710caf5c89f8d11275c7c61ea862dc597f5a634d2a3fd2fc9ea70f0f9a0b1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page