Skip to main content

Data science toolkit (TK) from Quality-Safety research Institute (QSI).

Project description

qsi-tk

Data science toolkit (TK) from Quality-Safety research Institute (QSI)

Installation

pip install qsi-tk

Contents

This package is a master library containing various previous packages published by our team.

module sub-module description standalone pypi package publication
qsi.io File I/O, Dataset loading TODO qsi-tk open datasets with algorithms
qsi.io.aug Data augmentation, e.g., generative models TODO Data aug with deep generative models. e.g., " variational autoencoders, generative adversarial networks, autoregressive models, normalizing flow models, energy-based models, and score-based models. "
qsi.io.pre Spectroscopic profiling data processing TODO qsi.io.pre.x_binning, qsi.io.pre.x_baseline_removal, etc.
qsi.vis Plotting
qsi.cs compressed sensing cs1 Adaptive compressed sensing of Raman spectroscopic profiling data for discriminative tasks [J]. Talanta, 2020, doi: 10.1016/j.talanta.2019.120681
Task-adaptive eigenvector-based projection (EBP) transform for compressed sensing: A case study of spectroscopic profiling sensor [J]. Analytical Science Advances. Chemistry Europe, 2021, doi: 10.1002/ansa.202100018
Compressed Sensing library for spectroscopic profiling data [J]. Software Impacts, 2023, doi: 10.1016/j.simpa.2023.100492
qsi.fs feature selection
qsi.ks kernels ackl TODO
qsi.dr qsi.dr.metrics Dimensionality Reduction (DR) quality metrics pyDRMetrics, wDRMetrics pyDRMetrics - A Python toolkit for dimensionality reduction quality assessment, Heliyon, Volume 7, Issue 2, 2021, e06199, ISSN 2405-8440, doi: 10.1016/j.heliyon.2021.e06199.
qsi.dr.mf matrix-factorization based DR pyMFDR Matrix Factorization Based Dimensionality Reduction Algorithms - A Comparative Study on Spectroscopic Profiling Data [J], Analytical Chemistry, 2022. doi: 10.1021/acs.analchem.2c01922
qsi.cla qsi.cla.metrics classifiability analysis pyCLAMs, wCLAMs A unified classifiability analysis framework based on meta-learner and its application in spectroscopic profiling data [J]. Applied Intelligence, 2021, doi: 10.1007/s10489-021-02810-8
pyCLAMs: An integrated Python toolkit for classifiability analysis [J]. SoftwareX, 2022, doi: 10.1016/j.softx.2022.101007
qsi.cla.ensemble homo-stacking, hetero-stacking, FSSE pyNNRW Spectroscopic Profiling-based Geographic Herb Identification by Neural Network with Random Weights [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, doi: 10.1016/j.saa.2022.121348
qsi.cla.kernel kernel-NNRW
qsi.cla.nnrw neural networks with random weights
qsi.pipeline General data analysis pipelines.
qsi.gui Web-based apps. e.g., `python -m qsi.gui.chaihu` will launch the app for bupleurum origin discrimination.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

qsi-tk-0.4.5.tar.gz (58.2 MB view details)

Uploaded Source

Built Distribution

qsi_tk-0.4.5-py3-none-any.whl (58.5 MB view details)

Uploaded Python 3

File details

Details for the file qsi-tk-0.4.5.tar.gz.

File metadata

  • Download URL: qsi-tk-0.4.5.tar.gz
  • Upload date:
  • Size: 58.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for qsi-tk-0.4.5.tar.gz
Algorithm Hash digest
SHA256 58fbd680c7cdbff9e2ba8e4fc8c78d1d4052b9fcd4484b74c1310d5ccfd1e58f
MD5 fd1bcc1cabdf8b6636c42622d28932eb
BLAKE2b-256 9639068a1848eca7eaa371eeddb0631f20133ea0deee294db0e195b9bdae801c

See more details on using hashes here.

File details

Details for the file qsi_tk-0.4.5-py3-none-any.whl.

File metadata

  • Download URL: qsi_tk-0.4.5-py3-none-any.whl
  • Upload date:
  • Size: 58.5 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for qsi_tk-0.4.5-py3-none-any.whl
Algorithm Hash digest
SHA256 b96f19a23a58792929ca90eafafeb91032cbd7c8beca859319921869de5fd615
MD5 f38256d4007052a8652a000f6ed68c16
BLAKE2b-256 c5d2b2c2ef4bcbcd6a8a27b4d79072290a0590f990e41cf0a03e73f522e85bc7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page