Skip to main content

Data science toolkit (TK) from Quality-Safety research Institute (QSI).

Project description

qsi-tk

Data science toolkit (TK) from Quality-Safety research Institute (QSI)

Installation

pip install qsi-tk

Contents

This package is a master library containing various previous packages published by our team.

module sub-module description standalone pypi package publication
qsi.io File I/O, Dataset loading TODO qsi-tk open datasets with algorithms
qsi.io.aug Data augmentation, e.g., generative models TODO Data aug with deep generative models. e.g., " variational autoencoders, generative adversarial networks, autoregressive models, KDE, normalizing flow models, energy-based models, and score-based models. "
qsi.io.pre Data processing, e.g., channel alignment and 1D-laplacian kernel fs for e-nose data; x-binning, baseline removal for TOF MS. TODO
qsi.vis Plotting
qsi.cs compressed sensing cs1 Adaptive compressed sensing of Raman spectroscopic profiling data for discriminative tasks [J]. Talanta, 2020, doi: 10.1016/j.talanta.2019.120681
Task-adaptive eigenvector-based projection (EBP) transform for compressed sensing: A case study of spectroscopic profiling sensor [J]. Analytical Science Advances. Chemistry Europe, 2021, doi: 10.1002/ansa.202100018
Compressed Sensing library for spectroscopic profiling data [J]. Software Impacts, 2023, doi: 10.1016/j.simpa.2023.100492
qsi.fs feature selection
qsi.ks kernels ackl TODO
qsi.dr qsi.dr.metrics Dimensionality Reduction (DR) quality metrics pyDRMetrics, wDRMetrics pyDRMetrics - A Python toolkit for dimensionality reduction quality assessment, Heliyon, Volume 7, Issue 2, 2021, e06199, ISSN 2405-8440, doi: 10.1016/j.heliyon.2021.e06199.
qsi.dr.mf matrix-factorization based DR pyMFDR Matrix Factorization Based Dimensionality Reduction Algorithms - A Comparative Study on Spectroscopic Profiling Data [J], Analytical Chemistry, 2022. doi: 10.1021/acs.analchem.2c01922
qsi.cla qsi.cla.metrics classifiability analysis pyCLAMs, wCLAMs A unified classifiability analysis framework based on meta-learner and its application in spectroscopic profiling data [J]. Applied Intelligence, 2021, doi: 10.1007/s10489-021-02810-8
pyCLAMs: An integrated Python toolkit for classifiability analysis [J]. SoftwareX, 2022, doi: 10.1016/j.softx.2022.101007
qsi.cla.ensemble homo-stacking, hetero-stacking, FSSE pyNNRW Spectroscopic Profiling-based Geographic Herb Identification by Neural Network with Random Weights [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, doi: 10.1016/j.saa.2022.121348
qsi.cla.kernel kernel-NNRW
qsi.cla.nnrw neural networks with random weights
qsi.pipeline General data analysis pipelines.
qsi.gui Web-based apps. e.g., `python -m qsi.gui.chaihu` will launch the app for bupleurum origin discrimination.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

qsi-tk-0.4.6.tar.gz (58.2 MB view details)

Uploaded Source

Built Distribution

qsi_tk-0.4.6-py3-none-any.whl (58.5 MB view details)

Uploaded Python 3

File details

Details for the file qsi-tk-0.4.6.tar.gz.

File metadata

  • Download URL: qsi-tk-0.4.6.tar.gz
  • Upload date:
  • Size: 58.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for qsi-tk-0.4.6.tar.gz
Algorithm Hash digest
SHA256 dc792e9ed59092e741ee4190ec0dec0b11cfb0f82705cd17dba54c773df4cfd2
MD5 9d115978314212cf65dd322725d45730
BLAKE2b-256 bea8a9a126d49b6771fad7560220c7dd63e39be838b21baaca2013d347021bf3

See more details on using hashes here.

File details

Details for the file qsi_tk-0.4.6-py3-none-any.whl.

File metadata

  • Download URL: qsi_tk-0.4.6-py3-none-any.whl
  • Upload date:
  • Size: 58.5 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for qsi_tk-0.4.6-py3-none-any.whl
Algorithm Hash digest
SHA256 c05c871f49b078ebf394f2b9c81cf5c8a8eaf527a4933cd16e96a630cda4ce81
MD5 4816b77f50d2d344c584fbbc55ab153b
BLAKE2b-256 1e13b2e71d2f9a3406e23441759993d75372d096c3b01b23ec5e58a4bf09aa3b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page