Skip to main content

Data science toolkit (TK) from Quality-Safety research Institute (QSI).

Project description

qsi-tk

Data science toolkit (TK) from Quality-Safety research Institute (QSI)

Installation

pip install qsi-tk

Contents

This package is a master library containing various previous packages published by our team.

module sub-module description standalone pypi package publication
qsi.io File I/O, Dataset loading TODO qsi-tk open datasets with algorithms
qsi.io.aug Data augmentation, e.g., generative models TODO Data aug with deep generative models. e.g., " variational autoencoders, generative adversarial networks, autoregressive models, KDE, normalizing flow models, energy-based models, and score-based models. "
qsi.io.pre Data processing, e.g., channel alignment and 1D-laplacian kernel fs for e-nose data; x-binning, baseline removal for TOF MS. TODO
qsi.vis Plotting
qsi.cs compressed sensing cs1 Adaptive compressed sensing of Raman spectroscopic profiling data for discriminative tasks [J]. Talanta, 2020, doi: 10.1016/j.talanta.2019.120681
Task-adaptive eigenvector-based projection (EBP) transform for compressed sensing: A case study of spectroscopic profiling sensor [J]. Analytical Science Advances. Chemistry Europe, 2021, doi: 10.1002/ansa.202100018
Compressed Sensing library for spectroscopic profiling data [J]. Software Impacts, 2023, doi: 10.1016/j.simpa.2023.100492
qsi.fs
qsi.fs.nch_time_series_fs multi-channel enose data fs with 1d-laplacian conv kernel TODO
qsi.fs.glasso Structured-fs of Raman data with group lasso TODO
qsi.ks kernels ackl TODO
qsi.dr qsi.dr.metrics Dimensionality Reduction (DR) quality metrics pyDRMetrics, wDRMetrics pyDRMetrics - A Python toolkit for dimensionality reduction quality assessment, Heliyon, Volume 7, Issue 2, 2021, e06199, ISSN 2405-8440, doi: 10.1016/j.heliyon.2021.e06199.
qsi.dr.mf matrix-factorization based DR pyMFDR Matrix Factorization Based Dimensionality Reduction Algorithms - A Comparative Study on Spectroscopic Profiling Data [J], Analytical Chemistry, 2022. doi: 10.1021/acs.analchem.2c01922
qsi.cla qsi.cla.metrics classifiability analysis pyCLAMs, wCLAMs A unified classifiability analysis framework based on meta-learner and its application in spectroscopic profiling data [J]. Applied Intelligence, 2021, doi: 10.1007/s10489-021-02810-8
pyCLAMs: An integrated Python toolkit for classifiability analysis [J]. SoftwareX, 2022, doi: 10.1016/j.softx.2022.101007
qsi.cla.ensemble homo-stacking, hetero-stacking, FSSE pyNNRW Spectroscopic Profiling-based Geographic Herb Identification by Neural Network with Random Weights [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, doi: 10.1016/j.saa.2022.121348
qsi.cla.kernel kernel-NNRW
qsi.cla.nnrw neural networks with random weights
qsi.pipeline General data analysis pipelines.
qsi.gui Web-based apps. e.g., `python -m qsi.gui.chaihu` will launch the app for bupleurum origin discrimination.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

qsi-tk-0.5.0.tar.gz (58.2 MB view details)

Uploaded Source

Built Distribution

qsi_tk-0.5.0-py3-none-any.whl (58.5 MB view details)

Uploaded Python 3

File details

Details for the file qsi-tk-0.5.0.tar.gz.

File metadata

  • Download URL: qsi-tk-0.5.0.tar.gz
  • Upload date:
  • Size: 58.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for qsi-tk-0.5.0.tar.gz
Algorithm Hash digest
SHA256 8476431edd771cda32e3d1b2bd2240384aa0a28723ac46204f660af1b75584f3
MD5 54fb2f81fceafd9ee704bfdcc21f9369
BLAKE2b-256 55830f5f3c678f748c34de5530292a6b689040aff2d304a859a23d9b53767a05

See more details on using hashes here.

File details

Details for the file qsi_tk-0.5.0-py3-none-any.whl.

File metadata

  • Download URL: qsi_tk-0.5.0-py3-none-any.whl
  • Upload date:
  • Size: 58.5 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for qsi_tk-0.5.0-py3-none-any.whl
Algorithm Hash digest
SHA256 c269557258a255591a166cedd71e7c5e23ada2e58b10878e65ee3a9aa879caeb
MD5 97eabc2e30c7e34507922476bbecbebb
BLAKE2b-256 7509cbc339ee15c951a1c64d5c14b6a7cdc89781916c5edc26a799bcb67ad241

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page