Data science toolkit (TK) from Quality-Safety research Institute (QSI).
Project description
qsi-tk
Data science toolkit (TK) from Quality-Safety research Institute (QSI)
Installation
pip install qsi-tk
Contents
This package is a master library containing various previous packages published by our team.
module | sub-module | description | standalone pypi package | publication |
qsi.io | File I/O, Dataset loading | TODO qsi-tk open datasets with algorithms | ||
qsi.io.aug | Data augmentation, e.g., generative models | TODO Data aug with deep generative models. e.g., " variational autoencoders, generative adversarial networks, autoregressive models, KDE, normalizing flow models, energy-based models, and score-based models. " | ||
qsi.io.pre | Data processing, e.g., channel alignment and 1D-laplacian kernel fs for e-nose data; x-binning, baseline removal for TOF MS. | TODO | ||
qsi.vis | Plotting | |||
qsi.cs | compressed sensing | cs1 | Adaptive compressed sensing of Raman spectroscopic profiling data for discriminative tasks [J]. Talanta, 2020, doi: 10.1016/j.talanta.2019.120681
Task-adaptive eigenvector-based projection (EBP) transform for compressed sensing: A case study of spectroscopic profiling sensor [J]. Analytical Science Advances. Chemistry Europe, 2021, doi: 10.1002/ansa.202100018 Compressed Sensing library for spectroscopic profiling data [J]. Software Impacts, 2023, doi: 10.1016/j.simpa.2023.100492 |
|
qsi.fs | ||||
qsi.fs.nch_time_series_fs | multi-channel enose data fs with 1d-laplacian conv kernel | TODO | ||
qsi.fs.glasso | Structured-fs of Raman data with group lasso | TODO | ||
qsi.ks | kernels | ackl | TODO | |
qsi.dr | qsi.dr.metrics | Dimensionality Reduction (DR) quality metrics | pyDRMetrics, wDRMetrics | pyDRMetrics - A Python toolkit for dimensionality reduction quality assessment, Heliyon, Volume 7, Issue 2, 2021, e06199, ISSN 2405-8440, doi: 10.1016/j.heliyon.2021.e06199. |
qsi.dr.mf | matrix-factorization based DR | pyMFDR | Matrix Factorization Based Dimensionality Reduction Algorithms - A Comparative Study on Spectroscopic Profiling Data [J], Analytical Chemistry, 2022. doi: 10.1021/acs.analchem.2c01922 | |
qsi.cla | qsi.cla.metrics | classifiability analysis | pyCLAMs, wCLAMs | A unified classifiability analysis framework based on meta-learner and its application in spectroscopic profiling data [J]. Applied Intelligence, 2021, doi: 10.1007/s10489-021-02810-8
pyCLAMs: An integrated Python toolkit for classifiability analysis [J]. SoftwareX, 2022, doi: 10.1016/j.softx.2022.101007 |
qsi.cla.ensemble | homo-stacking, hetero-stacking, FSSE | pyNNRW | Spectroscopic Profiling-based Geographic Herb Identification by Neural Network with Random Weights [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, doi: 10.1016/j.saa.2022.121348 | |
qsi.cla.kernel | kernel-NNRW | |||
qsi.cla.nnrw | neural networks with random weights | |||
qsi.pipeline | General data analysis pipelines. | |||
qsi.gui | Web-based apps. e.g., `python -m qsi.gui.chaihu` will launch the app for bupleurum origin discrimination. |
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
qsi-tk-0.5.0.tar.gz
(58.2 MB
view details)
Built Distribution
qsi_tk-0.5.0-py3-none-any.whl
(58.5 MB
view details)
File details
Details for the file qsi-tk-0.5.0.tar.gz
.
File metadata
- Download URL: qsi-tk-0.5.0.tar.gz
- Upload date:
- Size: 58.2 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8476431edd771cda32e3d1b2bd2240384aa0a28723ac46204f660af1b75584f3 |
|
MD5 | 54fb2f81fceafd9ee704bfdcc21f9369 |
|
BLAKE2b-256 | 55830f5f3c678f748c34de5530292a6b689040aff2d304a859a23d9b53767a05 |
File details
Details for the file qsi_tk-0.5.0-py3-none-any.whl
.
File metadata
- Download URL: qsi_tk-0.5.0-py3-none-any.whl
- Upload date:
- Size: 58.5 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c269557258a255591a166cedd71e7c5e23ada2e58b10878e65ee3a9aa879caeb |
|
MD5 | 97eabc2e30c7e34507922476bbecbebb |
|
BLAKE2b-256 | 7509cbc339ee15c951a1c64d5c14b6a7cdc89781916c5edc26a799bcb67ad241 |