Skip to main content

My implementation of a random selection of artificial neural net based models.

Project description

random neural nets

Implementations of a random selection of artificial neural net based models and methods.

Python version

Development is done using pyenv, pinning the python version to the one in the file .python-version.

Installation

On Linux:

git clone https://github.com/eschmidt42/random-neural-net-models.git
cd random-neural-net-models
make install

Usage

See jupyter notebooks in nbs/ for:

  • perceptron: perceptron.ipynb
  • backpropagation: backpropagation_rumelhart1986.ipynb
  • convolution: convolution_lecun1990.ipynb
  • cnn autoencoder:
    • mnist: cnn_autoencoder_fastai2022.ipynb
    • fashion mnist: cnn_autoencoder_fastai2022_fashion.ipynb
  • variational autoencoder:
    • dense: dense_variational_autoencoder_fastai2022.ipynb
    • cnn+dense: cnn_variational_autoencoder_fastai2022.ipynb
  • optimizers: stochastic_optimization_methods.ipynb

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

random-neural-net-models-0.1.0.tar.gz (15.8 kB view details)

Uploaded Source

Built Distribution

random_neural_net_models-0.1.0-py3-none-any.whl (17.2 kB view details)

Uploaded Python 3

File details

Details for the file random-neural-net-models-0.1.0.tar.gz.

File metadata

File hashes

Hashes for random-neural-net-models-0.1.0.tar.gz
Algorithm Hash digest
SHA256 2d1bf4d3bf337bc427190a10962ebd29dc016c940409a4f0958b95a2792a501d
MD5 dd64e5aef447193b91a19580bf2faa9d
BLAKE2b-256 c7dacc22116e33b6b725b22653775ab4a2141b4ffe45b8948d2579eb83c45bc5

See more details on using hashes here.

File details

Details for the file random_neural_net_models-0.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for random_neural_net_models-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 241ddadf94ed5d231698eca9e0d613ccead1942e6c95dda5e68f8f0643ad7c72
MD5 0ab78cf2b32f91e72a26c9efac49abf0
BLAKE2b-256 bbcb3723967b243973fb9cfe1ed46d3a4793515d030c70d8bd03c053e0ed2d95

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page