Skip to main content

Random generator supporting multiple PRNGs

Project description

Travis Build Status Appveyor Build Status PyPI version

Random Number Generator using settable Basic RNG interface for future NumPy RandomState evolution.

This is a library and generic interface for alternative random generators in Python and NumPy.

Compatibility Warning

RandomGenerator does not support Box-Muller normal variates and so it not 100% compatible with NumPy (or randomstate). Box-Muller normals are slow to generate and all functions which previously relied on Box-Muller normals now use the faster Ziggurat implementation. If you require backward compatibility, a legacy generator, LegacyGenerator, has been created which can fully reproduce the sequence produced by NumPy.

Features

  • Replacement for NumPy’s RandomState

    from randomgen import RandomGenerator, MT19937
    rnd = RandomGenerator(MT19937())
    x = rnd.standard_normal(100)
    y = rnd.random_sample(100)
    z = rnd.randn(10,10)
  • Default random generator is a fast generator called Xoroshiro128plus

  • Support for random number generators that support independent streams and jumping ahead so that sub-streams can be generated

  • Faster random number generation, especially for normal, standard exponential and standard gamma using the Ziggurat method

    from randomgen import RandomGenerator
    # Default basic PRNG is Xoroshiro128
    rnd = RandomGenerator()
    w = rnd.standard_normal(10000, method='zig')
    x = rnd.standard_exponential(10000, method='zig')
    y = rnd.standard_gamma(5.5, 10000, method='zig')
  • Support for 32-bit floating randoms for core generators. Currently supported:

    • Uniforms (random_sample)

    • Exponentials (standard_exponential, both Inverse CDF and Ziggurat)

    • Normals (standard_normal)

    • Standard Gammas (via standard_gamma)

    WARNING: The 32-bit generators are experimental and subject to change.

    Note: There are no plans to extend the alternative precision generation to all distributions.

  • Support for filling existing arrays using out keyword argument. Currently supported in (both 32- and 64-bit outputs)

    • Uniforms (random_sample)

    • Exponentials (standard_exponential)

    • Normals (standard_normal)

    • Standard Gammas (via standard_gamma)

Included Pseudo Random Number Generators

This module includes a number of alternative random number generators in addition to the MT19937 that is included in NumPy. The RNGs include:

Differences from numpy.random.RandomState

New Features

  • standard_normal, normal, randn and multivariate_normal all use the much faster (100%+) Ziggurat method.

  • standard_gamma and gamma both use the much faster Ziggurat method.

  • standard_exponential exponential both support an additional method keyword argument which can be inv or zig where inv corresponds to the current method using the inverse CDF and zig uses the much faster (100%+) Ziggurat method.

  • Core random number generators can produce either single precision (np.float32) or double precision (np.float64, the default) using the optional keyword argument dtype

  • Core random number generators can fill existing arrays using the out keyword argument

  • Standardizes integer-values random values as int64 for all platforms.

New Functions

  • random_entropy - Read from the system entropy provider, which is commonly used in cryptographic applications

  • random_raw - Direct access to the values produced by the underlying PRNG. The range of the values returned depends on the specifics of the PRNG implementation.

  • random_uintegers - unsigned integers, either 32- ([0, 2**32-1]) or 64-bit ([0, 2**64-1])

  • jump - Jumps RNGs that support it. jump moves the state a great distance. Only available if supported by the RNG.

  • advance - Advanced the RNG ‘as-if’ a number of draws were made, without actually drawing the numbers. Only available if supported by the RNG.

Status

  • Builds and passes all tests on:

    • Linux 32/64 bit, Python 2.7, 3.4, 3.5, 3.6

    • PC-BSD (FreeBSD) 64-bit, Python 2.7

    • OSX 64-bit, Python 3.6

    • Windows 32/64 bit, Python 2.7, 3.5 and 3.6

Version

The version matched the latest version of NumPy where RandomGenerator(MT19937()) passes all NumPy test.

Documentation

Documentation for the latest release is available on my GitHub pages. Documentation for the latest commit (unreleased) is available under devel.

Plans

This module is essentially complete. There are a few rough edges that need to be smoothed.

  • Creation of additional streams from where supported (i.e. a next_stream() method)

Requirements

Building requires:

  • Python (2.7, 3.4, 3.5, 3.6)

  • NumPy (1.11, 1.12, 1.13, 1.14, 1.15)

  • Cython (0.26+)

  • tempita (0.5+), if not provided by Cython

Testing requires pytest (3.0+).

Note: it might work with other versions but only tested with these versions.

Development and Testing

All development has been on 64-bit Linux, and it is regularly tested on Travis-CI (Linux/OSX) and Appveyor (Windows). The library is occasionally tested on Linux 32-bit and Free BSD 11.1.

Basic tests are in place for all RNGs. The MT19937 is tested against NumPy’s implementation for identical results. It also passes NumPy’s test suite where still relevant.

Installing

Either install from PyPi using

pip install randomgen

or, if you want the latest version,

pip install git+https://github.com/bashtage/randomgen.git

or from a cloned repo,

python setup.py install

SSE2

dSFTM makes use of SSE2 by default. If you have a very old computer or are building on non-x86, you can install using:

python setup.py install --no-sse2

Windows

Either use a binary installer, or if building from scratch, use Python 3.6 with Visual Studio 2015/2017 Community Edition. It can also be build using Microsoft Visual C++ Compiler for Python 2.7 and Python 2.7.

Using

The separate generators are importable from randomgen

from randomgen import RandomGenerator, ThreeFry, PCG64, MT19937
rg = RandomGenerator(ThreeFry())
rg.random_sample(100)

rg = RandomGenerator(PCG64())
rg.random_sample(100)

# Identical to NumPy
rg = RandomGenerator(MT19937())
rg.random_sample(100)

License

Standard NCSA, plus sub licenses for components.

Performance

Performance is promising, and even the mt19937 seems to be faster than NumPy’s mt19937.

Speed-up relative to NumPy (Uniform Doubles)
************************************************************
DSFMT           137.1%
MT19937          21.0%
PCG32           101.2%
PCG64           110.7%
Philox           -2.7%
ThreeFry        -11.4%
ThreeFry32      -62.3%
Xoroshiro128    181.4%
Xorshift1024    141.8%

Speed-up relative to NumPy (64-bit unsigned integers)
************************************************************
DSFMT            24.8%
MT19937          15.0%
PCG32            92.6%
PCG64            99.0%
Philox          -20.4%
ThreeFry        -21.7%
ThreeFry32      -64.4%
Xoroshiro128    164.2%
Xorshift1024    120.8%

Speed-up relative to NumPy (Standard normals)
************************************************************
DSFMT           299.4%
MT19937         271.2%
PCG32           364.5%
PCG64           364.2%
Philox          256.9%
ThreeFry        236.0%
ThreeFry32       97.0%
Xoroshiro128    477.4%
Xorshift1024    360.7%

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

randomgen-1.15.0.tar.gz (592.6 kB view details)

Uploaded Source

Built Distributions

randomgen-1.15.0-cp37-cp37m-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.7m Windows x86-64

randomgen-1.15.0-cp37-cp37m-win32.whl (2.6 MB view details)

Uploaded CPython 3.7m Windows x86

randomgen-1.15.0-cp37-cp37m-manylinux1_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.7m

randomgen-1.15.0-cp37-cp37m-manylinux1_i686.whl (1.6 MB view details)

Uploaded CPython 3.7m

randomgen-1.15.0-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

randomgen-1.15.0-cp36-cp36m-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.6m Windows x86-64

randomgen-1.15.0-cp36-cp36m-win32.whl (2.6 MB view details)

Uploaded CPython 3.6m Windows x86

randomgen-1.15.0-cp36-cp36m-manylinux1_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.6m

randomgen-1.15.0-cp36-cp36m-manylinux1_i686.whl (1.6 MB view details)

Uploaded CPython 3.6m

randomgen-1.15.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

randomgen-1.15.0-cp35-cp35m-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.5m Windows x86-64

randomgen-1.15.0-cp35-cp35m-win32.whl (2.5 MB view details)

Uploaded CPython 3.5m Windows x86

randomgen-1.15.0-cp35-cp35m-manylinux1_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.5m

randomgen-1.15.0-cp35-cp35m-manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.5m

randomgen-1.15.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

randomgen-1.15.0-cp27-cp27mu-manylinux1_x86_64.whl (1.7 MB view details)

Uploaded CPython 2.7mu

randomgen-1.15.0-cp27-cp27mu-manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 2.7mu

randomgen-1.15.0-cp27-cp27m-win_amd64.whl (2.6 MB view details)

Uploaded CPython 2.7m Windows x86-64

randomgen-1.15.0-cp27-cp27m-win32.whl (2.5 MB view details)

Uploaded CPython 2.7m Windows x86

randomgen-1.15.0-cp27-cp27m-manylinux1_x86_64.whl (1.7 MB view details)

Uploaded CPython 2.7m

randomgen-1.15.0-cp27-cp27m-manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 2.7m

randomgen-1.15.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (1.7 MB view details)

Uploaded CPython 2.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file randomgen-1.15.0.tar.gz.

File metadata

  • Download URL: randomgen-1.15.0.tar.gz
  • Upload date:
  • Size: 592.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.6.6

File hashes

Hashes for randomgen-1.15.0.tar.gz
Algorithm Hash digest
SHA256 027547c90fedb5c27ede591149272ff740d14898eafdf046a00df3c508d78c90
MD5 d58217b96fbec2971d0b040fac825571
BLAKE2b-256 4e6dc0cae14e7bb79a5aef18ffc42479052011d1b0772120d655c7c7dfda8a31

See more details on using hashes here.

File details

Details for the file randomgen-1.15.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: randomgen-1.15.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.7.0

File hashes

Hashes for randomgen-1.15.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 3f4ca8ce5c79fc83f0f58a43bed06111de2e1a676a2818a83e48838215b918c9
MD5 901e62952815f4899b62d3b2f2dd6412
BLAKE2b-256 89f0f22803ac51b7af7a30a5e212db215c9f58fc7022c79b8c8d1c3d8d9a2c27

See more details on using hashes here.

File details

Details for the file randomgen-1.15.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: randomgen-1.15.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.7.0

File hashes

Hashes for randomgen-1.15.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 cd2d32bda96993f02c4ecc76bbacf56c9d7939431f01c2efdc9be84c161da830
MD5 55bb82456375fb77a0c94c436eb5a7ac
BLAKE2b-256 2adb527e08379f35741e9b02625bc6db66e61d55a60c8f086055784c97c6d65e

See more details on using hashes here.

File details

Details for the file randomgen-1.15.0-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: randomgen-1.15.0-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.4.2 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.6.3

File hashes

Hashes for randomgen-1.15.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 5f5691eec4a1f2b18ce84cbdf2c359a5a441e6fd7508cbe8fbc0acd84e3aebbf
MD5 977d36455fb1b4d8fea87efe6f42e9b6
BLAKE2b-256 7c70d77e391d47d5a8a70fe7d15566bac3a5ee61689b62168c5fc8130bb29b95

See more details on using hashes here.

File details

Details for the file randomgen-1.15.0-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: randomgen-1.15.0-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.4.2 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.6.3

File hashes

Hashes for randomgen-1.15.0-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 659132a39f5188b2189c1d4ff294ed025c10c4f351d4745fd64cb15efd86d19b
MD5 e219efe88bc4e710c84fff8eaf4b59d8
BLAKE2b-256 621a88056ef2a6436f8e5edbd552c7c039edb0769794178b7080e6b9cc766a05

See more details on using hashes here.

File details

Details for the file randomgen-1.15.0-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for randomgen-1.15.0-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 ccaa04ebff523aefd1a1678f8d643616f6716b43ddf53d7842572d616687b564
MD5 e12063bf233d11fb244738b7e1653e34
BLAKE2b-256 4d381d240d30d2c633ec167287ed89d9ba1544e06a85a68f3b51dff49ec211a4

See more details on using hashes here.

File details

Details for the file randomgen-1.15.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: randomgen-1.15.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.6.6

File hashes

Hashes for randomgen-1.15.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 9281cfe0c175d2c3165a3077abb4e7976eb3bf4c1b8d0eba04cfb12ca547c020
MD5 8a0418c9550b1317d55a33e3f15c94e9
BLAKE2b-256 8ecb47e528b2b82c8be2780599292508dc7dd2045ec3aff278d0029e623f9052

See more details on using hashes here.

File details

Details for the file randomgen-1.15.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: randomgen-1.15.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.6.6

File hashes

Hashes for randomgen-1.15.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 a142b2a6aa939fa435ed47dd328439b28a30c35eae3916f038b999ac3968e68b
MD5 0b78470b6d35b5cc97b09749626fe1c3
BLAKE2b-256 b10bf633275de9a0d6b8df2a3f6ea8b9b0d091eaf23ec29ec956de6e48e35a77

See more details on using hashes here.

File details

Details for the file randomgen-1.15.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: randomgen-1.15.0-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.4.2 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.6.3

File hashes

Hashes for randomgen-1.15.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c17e2d64d8944d7262fb380298496fef96272754b5df1118208cef5196770d40
MD5 a70235f1fc1e76edad36d6b4216a2ec2
BLAKE2b-256 35a6d8f4885666d0256faa7b81b8510f8078de76283800c7717565a92243b1ba

See more details on using hashes here.

File details

Details for the file randomgen-1.15.0-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: randomgen-1.15.0-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.4.2 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.6.3

File hashes

Hashes for randomgen-1.15.0-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 65b6fb8f64114f873865866b8eb4152aa4d46c89fa7556a4d6eee7c6a4d35cef
MD5 5bcad518b24f9211b7e79cccb08f1442
BLAKE2b-256 354070322b515b6029f295f1d7bca60169c76a7f605cca3729e929268b0bd8b3

See more details on using hashes here.

File details

Details for the file randomgen-1.15.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for randomgen-1.15.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 d6e95d54f8954deb95a200c56d52322db128282ff2e4bf6beb1564016ef6591f
MD5 f88337783c49f3132affa0d3e567e97d
BLAKE2b-256 d98a6c42eb9f93947d92508eef0c5500f3623573b18291423f6fe042cf644e57

See more details on using hashes here.

File details

Details for the file randomgen-1.15.0-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: randomgen-1.15.0-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.5.6

File hashes

Hashes for randomgen-1.15.0-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 0a901b8d87591e7b9cc9025927bab51cfeaa925167ae617b56f68e1e439c0b5b
MD5 ff20be2abdb807d1276d41b90375b4a0
BLAKE2b-256 895b49a26a71e71a7190972f3385f3609e870a22f9b4151a26956302f7a1e199

See more details on using hashes here.

File details

Details for the file randomgen-1.15.0-cp35-cp35m-win32.whl.

File metadata

  • Download URL: randomgen-1.15.0-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.5.6

File hashes

Hashes for randomgen-1.15.0-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 18eae4dd746b946caa7c497d65193ced938d1fc5e868be022ccfb0bc56e73bf2
MD5 c577a5beccc329db09dc391cf4ae6ca2
BLAKE2b-256 fc9cff88d263dec0bcc5786b3f3c6c7b5495ed42b094f15b373c81b30c32caa3

See more details on using hashes here.

File details

Details for the file randomgen-1.15.0-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: randomgen-1.15.0-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.4.2 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.6.3

File hashes

Hashes for randomgen-1.15.0-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 0fd3a88c2e4e4e27f3e3bfe35af6e2550b49542eb0c8d13a3509c70bdeec870b
MD5 09855bde9408be8b9f2f72a53de1ff39
BLAKE2b-256 5d267ad07018f4b514fddc0edc6a451bca32b9e563c388827fbc0e78cfc74f19

See more details on using hashes here.

File details

Details for the file randomgen-1.15.0-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: randomgen-1.15.0-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.4.2 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.6.3

File hashes

Hashes for randomgen-1.15.0-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 524b03658387b91484627f12c65cc521b38dd4e65ac428e6ce58fda3941e32f9
MD5 0a61eb7af1d599ac211c7f6da7a4d8fb
BLAKE2b-256 f7a4f51496dae872f2a68726feac45daeda22f1b8c6c9d5e1633aa032a0a1196

See more details on using hashes here.

File details

Details for the file randomgen-1.15.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for randomgen-1.15.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 c234361d4166533bbe11a4c5a11098e5626c1919a6c0611c6d9edd4af6c81517
MD5 7e6289d4412f0f6264200107c844cdfe
BLAKE2b-256 222feefde482c931ad36e796ff280fb81435316ab12293e7820b06084e303d0a

See more details on using hashes here.

File details

Details for the file randomgen-1.15.0-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

  • Download URL: randomgen-1.15.0-cp27-cp27mu-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.4.2 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.6.3

File hashes

Hashes for randomgen-1.15.0-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 6ca7421fd71cb48a4a4ec398e6fbcee5c358d8e4976138c1d716c247eb7e2eff
MD5 4e469e0f7c05f6f6ece1db6affe5a9db
BLAKE2b-256 d9846f471118ca07321037f8e6fd9d9de78cb1d9cc5a1f3eee94eaa1cb02e8c9

See more details on using hashes here.

File details

Details for the file randomgen-1.15.0-cp27-cp27mu-manylinux1_i686.whl.

File metadata

  • Download URL: randomgen-1.15.0-cp27-cp27mu-manylinux1_i686.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.4.2 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.6.3

File hashes

Hashes for randomgen-1.15.0-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 e91b10db0ee8e44c12849acbdcf1e80c102e9777359c62a81d808095dc021e43
MD5 f1aa1d899463b39466a10d664b592bb0
BLAKE2b-256 cbd792a478c4d1d4f2b0ff9381b9349225e4737443a863f673bbd7e782636d5b

See more details on using hashes here.

File details

Details for the file randomgen-1.15.0-cp27-cp27m-win_amd64.whl.

File metadata

  • Download URL: randomgen-1.15.0-cp27-cp27m-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 2.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/2.7.15

File hashes

Hashes for randomgen-1.15.0-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 1df1c22a20cd883353655952547aeed63d647e127e122b5a2075110a28ded7f3
MD5 a9872745ee042a868ac0039ecfdac740
BLAKE2b-256 bf282ca58719a16334446dee607e6dbeb89a4c70d560ee57a161fe1a5d6b37e9

See more details on using hashes here.

File details

Details for the file randomgen-1.15.0-cp27-cp27m-win32.whl.

File metadata

  • Download URL: randomgen-1.15.0-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/2.7.15

File hashes

Hashes for randomgen-1.15.0-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 b32d61ebb9896f114f4e854a0af0ed4548d57be75a1c6404f005b9fdc59d2899
MD5 fc72d32f1e7e43186b1717ce8b8c457e
BLAKE2b-256 f7d12acd9860d75a78341e1b3aefe59aaf1b1de1e4131f982d89492ee3cbc128

See more details on using hashes here.

File details

Details for the file randomgen-1.15.0-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

  • Download URL: randomgen-1.15.0-cp27-cp27m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.4.2 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.6.3

File hashes

Hashes for randomgen-1.15.0-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 4fea65756b6d6627b6e5e7423c59c3d1add9e858bc7d35733ef2217cb62db0aa
MD5 0fea31e26736351c3698f1e3efe40297
BLAKE2b-256 6c3619ae0f433b67faf05cd3ce93131da566e082e76a5e0f705178360435fb85

See more details on using hashes here.

File details

Details for the file randomgen-1.15.0-cp27-cp27m-manylinux1_i686.whl.

File metadata

  • Download URL: randomgen-1.15.0-cp27-cp27m-manylinux1_i686.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.4.2 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.6.3

File hashes

Hashes for randomgen-1.15.0-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 c2b6ff552f320fb0aa6d2b386e8b6d931bc38f1493625c19b034fd0f5295e755
MD5 ddfa835f6efbf5a8809abceacf84e2dc
BLAKE2b-256 d5b74c348dac2348638495ab6a0675ac8f1a3fe348881a3d1d909051401f0c5f

See more details on using hashes here.

File details

Details for the file randomgen-1.15.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for randomgen-1.15.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 5ae8fb748afe7e87af7e096d035abec7a56d845d6466d7fdf8ccfca571a9c539
MD5 f8052f67e450cf1574522ebd6dfab244
BLAKE2b-256 6236dea7f92188f1557a12b0a4c8ccce90f8a02e5d24d1880c31602d5df5c950

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page