Random generator supporting multiple PRNGs
Project description
Random Number Generator using settable Basic RNG interface for future NumPy RandomState evolution.
This is a library and generic interface for alternative random generators in Python and NumPy.
Python 2.7 Support
Release 1.16.0 is the final version that supports Python 2.7. Any bugs in v1.16.0 will be patched until the end of 2019. All future releases are Python 3, with an initial minimum version of 3.5.
Compatibility Warning
RandomGenerator does not support Box-Muller normal variates and so it not 100% compatible with NumPy (or randomstate). Box-Muller normals are slow to generate and all functions which previously relied on Box-Muller normals now use the faster Ziggurat implementation. If you require backward compatibility, a legacy generator, LegacyGenerator, has been created which can fully reproduce the sequence produced by NumPy.
Features
Replacement for NumPy’s RandomState
from randomgen import RandomGenerator, MT19937 rnd = RandomGenerator(MT19937()) x = rnd.standard_normal(100) y = rnd.random_sample(100) z = rnd.randn(10,10)
Default random generator is a fast generator called Xoroshiro128plus
Support for random number generators that support independent streams and jumping ahead so that sub-streams can be generated
Faster random number generation, especially for normal, standard exponential and standard gamma using the Ziggurat method
from randomgen import RandomGenerator # Default basic PRNG is Xoroshiro128 rnd = RandomGenerator() w = rnd.standard_normal(10000, method='zig') x = rnd.standard_exponential(10000, method='zig') y = rnd.standard_gamma(5.5, 10000, method='zig')
Support for 32-bit floating randoms for core generators. Currently supported:
Uniforms (random_sample)
Exponentials (standard_exponential, both Inverse CDF and Ziggurat)
Normals (standard_normal)
Standard Gammas (via standard_gamma)
WARNING: The 32-bit generators are experimental and subject to change.
Note: There are no plans to extend the alternative precision generation to all distributions.
Support for filling existing arrays using out keyword argument. Currently supported in (both 32- and 64-bit outputs)
Uniforms (random_sample)
Exponentials (standard_exponential)
Normals (standard_normal)
Standard Gammas (via standard_gamma)
Support for Lemire’s method of generating uniform integers on an arbitrary interval by setting use_masked=True.
Included Pseudo Random Number Generators
This module includes a number of alternative random number generators in addition to the MT19937 that is included in NumPy. The RNGs include:
MT19937, the NumPy rng
dSFMT a SSE2-aware version of the MT19937 generator that is especially fast at generating doubles
xoroshiro128+, xorshift1024*φ, xoshiro256**, and xoshiro512**
ThreeFry and Philox from Random123
Differences from numpy.random.RandomState
New Features
standard_normal, normal, randn and multivariate_normal all use the much faster (100%+) Ziggurat method.
standard_gamma and gamma both use the much faster Ziggurat method.
standard_exponential exponential both support an additional method keyword argument which can be inv or zig where inv corresponds to the current method using the inverse CDF and zig uses the much faster (100%+) Ziggurat method.
Core random number generators can produce either single precision (np.float32) or double precision (np.float64, the default) using the optional keyword argument dtype
Core random number generators can fill existing arrays using the out keyword argument
Standardizes integer-values random values as int64 for all platforms.
randint supports generating using rejection sampling on masked values (the default) or Lemire’s method. Lemire’s method can be much faster when the required interval length is much smaller than the closes power of 2.
New Functions
random_entropy - Read from the system entropy provider, which is commonly used in cryptographic applications
random_raw - Direct access to the values produced by the underlying PRNG. The range of the values returned depends on the specifics of the PRNG implementation.
random_uintegers - unsigned integers, either 32- ([0, 2**32-1]) or 64-bit ([0, 2**64-1])
jump - Jumps RNGs that support it. jump moves the state a great distance. Only available if supported by the RNG.
advance - Advanced the RNG ‘as-if’ a number of draws were made, without actually drawing the numbers. Only available if supported by the RNG.
Status
Builds and passes all tests on:
Linux 32/64 bit, Python 2.7, 3.4, 3.5, 3.6
PC-BSD (FreeBSD) 64-bit, Python 2.7
OSX 64-bit, Python 3.6
Windows 32/64 bit, Python 2.7, 3.5 and 3.6
Version
The version matched the latest version of NumPy where RandomGenerator(MT19937()) passes all NumPy test.
Documentation
Documentation for the latest release is available on my GitHub pages. Documentation for the latest commit (unreleased) is available under devel.
Plans
This module is essentially complete. There are a few rough edges that need to be smoothed.
Creation of additional streams from where supported (i.e. a next_stream() method)
Requirements
Building requires:
Python (2.7, 3.5, 3.6, 3.7)
NumPy (1.13, 1.14, 1.15)
Cython (0.26+)
tempita (0.5+), if not provided by Cython
Testing requires pytest (3.0+).
Note: it might work with other versions but only tested with these versions.
Development and Testing
All development has been on 64-bit Linux, and it is regularly tested on Travis-CI (Linux/OSX) and Appveyor (Windows). The library is occasionally tested on Linux 32-bit and Free BSD 11.1.
Basic tests are in place for all RNGs. The MT19937 is tested against NumPy’s implementation for identical results. It also passes NumPy’s test suite where still relevant.
Installing
Either install from PyPi using
pip install randomgen
or, if you want the latest version,
pip install git+https://github.com/bashtage/randomgen.git
or from a cloned repo,
python setup.py install
SSE2
dSFTM makes use of SSE2 by default. If you have a very old computer or are building on non-x86, you can install using:
python setup.py install --no-sse2
Windows
Either use a binary installer, or if building from scratch, use Python 3.6 with Visual Studio 2015/2017 Community Edition. It can also be build using Microsoft Visual C++ Compiler for Python 2.7 and Python 2.7.
Using
The separate generators are importable from randomgen
from randomgen import RandomGenerator, ThreeFry, PCG64, MT19937
rg = RandomGenerator(ThreeFry())
rg.random_sample(100)
rg = RandomGenerator(PCG64())
rg.random_sample(100)
# Identical to NumPy
rg = RandomGenerator(MT19937())
rg.random_sample(100)
License
Standard NCSA, plus sub licenses for components.
Performance
Performance is promising, and even the mt19937 seems to be faster than NumPy’s mt19937.
Speed-up relative to NumPy (Uniform Doubles) ************************************************************ DSFMT 184.9% MT19937 17.3% PCG32 83.3% PCG64 108.3% Philox -4.9% ThreeFry -12.0% ThreeFry32 -63.9% Xoroshiro128 159.5% Xorshift1024 150.4% Xoshiro256StarStar 145.7% Xoshiro512StarStar 113.1% Speed-up relative to NumPy (64-bit unsigned integers) ************************************************************ DSFMT 17.4% MT19937 7.8% PCG32 60.3% PCG64 73.5% Philox -25.5% ThreeFry -30.5% ThreeFry32 -67.8% Xoroshiro128 124.0% Xorshift1024 109.4% Xoshiro256StarStar 100.3% Xoshiro512StarStar 63.5% Speed-up relative to NumPy (Standard normals) ************************************************************ DSFMT 183.0% MT19937 169.0% PCG32 240.7% PCG64 231.6% Philox 131.3% ThreeFry 118.3% ThreeFry32 21.6% Xoroshiro128 332.1% Xorshift1024 232.4% Xoshiro256StarStar 306.6% Xoshiro512StarStar 274.6%
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
File details
Details for the file randomgen-1.16.1.tar.gz
.
File metadata
- Download URL: randomgen-1.16.1.tar.gz
- Upload date:
- Size: 642.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b34e6889621db21ad1080f2d2952c84059cc463d01d900421d7c1f10b1d2b7dd |
|
MD5 | 9c8b2cad807ecb5c05be6a5e2328154e |
|
BLAKE2b-256 | b0dd8ef4261982a88779d15614b2cabafe78b8364c2f16f28d624d0cae472f38 |
File details
Details for the file randomgen-1.16.1-cp37-cp37m-win_amd64.whl
.
File metadata
- Download URL: randomgen-1.16.1-cp37-cp37m-win_amd64.whl
- Upload date:
- Size: 3.0 MB
- Tags: CPython 3.7m, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | bc3f9c5f871a87b3e01d7ae0065cf8cca222ae979a9bc2f37aba63b39aac872d |
|
MD5 | 25cda77e509198d87e42c1d5a8ef9dbe |
|
BLAKE2b-256 | a6c0828c24e838cb1c007c3e3ee39731e5d06fb59109495ea9ae39f95b9de929 |
File details
Details for the file randomgen-1.16.1-cp37-cp37m-win32.whl
.
File metadata
- Download URL: randomgen-1.16.1-cp37-cp37m-win32.whl
- Upload date:
- Size: 2.8 MB
- Tags: CPython 3.7m, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ec81d30c62107799a4ae19436e651afd3123d72a7aeead812029cc2ee451e6c9 |
|
MD5 | 0e18a30b0004a9d4f7ad369f830d9a16 |
|
BLAKE2b-256 | 0307b170b22f1c1743daed522895ac676556e8dd4815f23676d96cabc549423b |
File details
Details for the file randomgen-1.16.1-cp37-cp37m-manylinux1_x86_64.whl
.
File metadata
- Download URL: randomgen-1.16.1-cp37-cp37m-manylinux1_x86_64.whl
- Upload date:
- Size: 1.9 MB
- Tags: CPython 3.7m
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1fae2fd44ac1e5ddd37a8f16b3d18228a330e0880a1a1d8aae1b3bf5b6b3e35e |
|
MD5 | 41c910bbbf9d590ef9c84554ef6dbaa0 |
|
BLAKE2b-256 | 0bdce587e48dc63a4d6e990a0cdc9bba58a2ffb1005815dc38288780760dd05e |
File details
Details for the file randomgen-1.16.1-cp37-cp37m-manylinux1_i686.whl
.
File metadata
- Download URL: randomgen-1.16.1-cp37-cp37m-manylinux1_i686.whl
- Upload date:
- Size: 1.7 MB
- Tags: CPython 3.7m
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 78ec3c971a6ef4484abfd2e541fa60dcf1403f3c49bdabd08e9e99b0535e60ab |
|
MD5 | d520a0d8cb4d319f163a76a3ad6d3352 |
|
BLAKE2b-256 | ef8be675b2ab6017b787dbfe041ab843d1c7a0acca00c97400d833e6677336af |
File details
Details for the file randomgen-1.16.1-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
.
File metadata
- Download URL: randomgen-1.16.1-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
- Upload date:
- Size: 1.8 MB
- Tags: CPython 3.7m, macOS 10.10+ intel, macOS 10.10+ x86-64, macOS 10.6+ intel, macOS 10.9+ intel, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7943c4c4a0c8e2b7b5f6443fff7078217924adc48eb88a9f21dbf2c315da3778 |
|
MD5 | 435121f437c6f3981d3d72ab1ebe5bd6 |
|
BLAKE2b-256 | 9bb0b233699606bb545f6576e1cde525f7d08c231d38f54c8bb1b1dd8dfb7eb2 |
File details
Details for the file randomgen-1.16.1-cp36-cp36m-win_amd64.whl
.
File metadata
- Download URL: randomgen-1.16.1-cp36-cp36m-win_amd64.whl
- Upload date:
- Size: 3.0 MB
- Tags: CPython 3.6m, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9df98a6d92c55a27d83383b42d6fc1cbd138133102a82268a9d64f701ad3b2a2 |
|
MD5 | c2ec3541905e0f221a780c37be660f96 |
|
BLAKE2b-256 | 2f4a052649892ec5f91fd9b82633756eaae78d4112cc8ab099b60ca0659aaaaf |
File details
Details for the file randomgen-1.16.1-cp36-cp36m-win32.whl
.
File metadata
- Download URL: randomgen-1.16.1-cp36-cp36m-win32.whl
- Upload date:
- Size: 2.8 MB
- Tags: CPython 3.6m, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cf13db8450e72f3f7f2aeb5fced11a1d64d55c479f3a4748aa99425de4308793 |
|
MD5 | 4cf0366051bbf60177c9cce3f229028c |
|
BLAKE2b-256 | 3b8c8de0da7bcc4d2d2d255c760522e8dcd679aaf0fea28f178f0ff608391468 |
File details
Details for the file randomgen-1.16.1-cp36-cp36m-manylinux1_x86_64.whl
.
File metadata
- Download URL: randomgen-1.16.1-cp36-cp36m-manylinux1_x86_64.whl
- Upload date:
- Size: 1.8 MB
- Tags: CPython 3.6m
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1b1b731bb7f9514cac19787f20474f2f49dc97af2c54eb66a8a66205997b577e |
|
MD5 | eae5dbb00e892610d7fc055d57a2f294 |
|
BLAKE2b-256 | f5a734e3262f04996214e8a65e681364c7eceb86618be5e224821931bbd73508 |
File details
Details for the file randomgen-1.16.1-cp36-cp36m-manylinux1_i686.whl
.
File metadata
- Download URL: randomgen-1.16.1-cp36-cp36m-manylinux1_i686.whl
- Upload date:
- Size: 1.7 MB
- Tags: CPython 3.6m
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a1e6b3184c679c1677f2eff5d6644a94456c1b4346f2cf731a0b44214b27f3a9 |
|
MD5 | cf2c3bf99ee87fb753deb38174113533 |
|
BLAKE2b-256 | d1b6a17fc587adc1b4ede1114ac1f943c4e7813f3595201b7d41de030f7ad0af |
File details
Details for the file randomgen-1.16.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
.
File metadata
- Download URL: randomgen-1.16.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
- Upload date:
- Size: 1.8 MB
- Tags: CPython 3.6m, macOS 10.10+ intel, macOS 10.10+ x86-64, macOS 10.6+ intel, macOS 10.9+ intel, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 419a526a35da896975dd2868a58067776111adcf304213e18cea6ab48d42c6e1 |
|
MD5 | fbe8821a75ffde9898d2cfbe2806702b |
|
BLAKE2b-256 | 1459e2672197edc403d8c85ff63242d5bf34fc8bf5768a64afc1aa391c040676 |
File details
Details for the file randomgen-1.16.1-cp35-cp35m-win_amd64.whl
.
File metadata
- Download URL: randomgen-1.16.1-cp35-cp35m-win_amd64.whl
- Upload date:
- Size: 2.9 MB
- Tags: CPython 3.5m, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.2.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.5.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 86ddf1a72f1b5e81c721a65b42f4ef2f6eb92529c0880acb5065c2c853d6f8db |
|
MD5 | 17c6e1693e353574893c37f12dfc5487 |
|
BLAKE2b-256 | 9fb8f11122d58fcbbe1290ce36397aaef786712f87ff87a8e813e4f84b213d59 |
File details
Details for the file randomgen-1.16.1-cp35-cp35m-win32.whl
.
File metadata
- Download URL: randomgen-1.16.1-cp35-cp35m-win32.whl
- Upload date:
- Size: 2.8 MB
- Tags: CPython 3.5m, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.2.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.5.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 561eb4398eecc754c180c9d208a3936d45079a8e850f6afad4015add079dd848 |
|
MD5 | a3160583015216d86c2df599ef3a2df7 |
|
BLAKE2b-256 | 5848a4f2b93ac423ec4d6e5d6cd56be7e76269de29cbde355e2557bc343c21aa |
File details
Details for the file randomgen-1.16.1-cp35-cp35m-manylinux1_x86_64.whl
.
File metadata
- Download URL: randomgen-1.16.1-cp35-cp35m-manylinux1_x86_64.whl
- Upload date:
- Size: 1.8 MB
- Tags: CPython 3.5m
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fb9197d36dd84d309167f4dc3c9f4b8bec9de75c604a78ee420d98b236431815 |
|
MD5 | cd8e88342d1f1226637eb4d48a4d129e |
|
BLAKE2b-256 | eae57608d72b1bf616cd2c34843c36908585c9820bc69c2510c1b3d3d7800005 |
File details
Details for the file randomgen-1.16.1-cp35-cp35m-manylinux1_i686.whl
.
File metadata
- Download URL: randomgen-1.16.1-cp35-cp35m-manylinux1_i686.whl
- Upload date:
- Size: 1.7 MB
- Tags: CPython 3.5m
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0117e6d77b0229a21246793d2d41f5c7936ba55c8103d0ba2acf2ac7bf98821f |
|
MD5 | 1b683f39db9fe8b5ad437a44ed864b75 |
|
BLAKE2b-256 | 7622373005e260fce6d20488ccaf1765cfc5190e1a7225e05a63b9bab4edb143 |
File details
Details for the file randomgen-1.16.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
.
File metadata
- Download URL: randomgen-1.16.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
- Upload date:
- Size: 1.7 MB
- Tags: CPython 3.5m, macOS 10.10+ intel, macOS 10.10+ x86-64, macOS 10.6+ intel, macOS 10.9+ intel, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cfa384dde8f9e4025f74464be1a22aa69550023d1a35063127a3355a6df64a51 |
|
MD5 | 9f779888f9adecb8a08875aaada5d357 |
|
BLAKE2b-256 | ad2977c7b59cccb9f63ed9d86868667a0df788a5b2e188b5c361267f3661c213 |
File details
Details for the file randomgen-1.16.1-cp27-cp27mu-manylinux1_x86_64.whl
.
File metadata
- Download URL: randomgen-1.16.1-cp27-cp27mu-manylinux1_x86_64.whl
- Upload date:
- Size: 1.8 MB
- Tags: CPython 2.7mu
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4fb675304f48bab6bb4737c7b97dda8d1bb3454e1ca27d418ac587f3b189f209 |
|
MD5 | c5afea9a0cf7ffe5c6479fc09dc89ecc |
|
BLAKE2b-256 | 5620defe12e7889beeeaf5d57b45ecefc4ea3c0814fd54171ae775e422b9fbb9 |
File details
Details for the file randomgen-1.16.1-cp27-cp27mu-manylinux1_i686.whl
.
File metadata
- Download URL: randomgen-1.16.1-cp27-cp27mu-manylinux1_i686.whl
- Upload date:
- Size: 1.6 MB
- Tags: CPython 2.7mu
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 82b0a46bf95c8eccc10799713abcd6b80b4775e27a90ce19435114d917346b42 |
|
MD5 | f107a50e117c1ec54976441f8da31fd1 |
|
BLAKE2b-256 | f1b2d8618ba7ec4431e9a530f7297022678dc2eff1dfb9e7bceb37b9d7639a7b |
File details
Details for the file randomgen-1.16.1-cp27-cp27m-win_amd64.whl
.
File metadata
- Download URL: randomgen-1.16.1-cp27-cp27m-win_amd64.whl
- Upload date:
- Size: 2.9 MB
- Tags: CPython 2.7m, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/2.7.16
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 90d17d6b886eb3bf10b3b81f132f19bd0586404250cc7d32e52ccab6518c1dca |
|
MD5 | 83dcbf058cc9234025583602303fa488 |
|
BLAKE2b-256 | 702273433e99eab560a9d837d98737f0624f559938bba1e84fbeb832e808e8a2 |
File details
Details for the file randomgen-1.16.1-cp27-cp27m-win32.whl
.
File metadata
- Download URL: randomgen-1.16.1-cp27-cp27m-win32.whl
- Upload date:
- Size: 2.8 MB
- Tags: CPython 2.7m, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/2.7.16
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6dfdfabfe75448aa83a9cde9d4ef91a10d2ba96a553f600a032490c0d285d9c7 |
|
MD5 | c6a99187f3ad67b21cfa20d0422f512e |
|
BLAKE2b-256 | 4f2e621c23be1ab0048fbd2c4d65220d3e2a6e2708d4717a1092d3c3918d1a63 |
File details
Details for the file randomgen-1.16.1-cp27-cp27m-manylinux1_x86_64.whl
.
File metadata
- Download URL: randomgen-1.16.1-cp27-cp27m-manylinux1_x86_64.whl
- Upload date:
- Size: 1.8 MB
- Tags: CPython 2.7m
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6af34ada4c6a7865f837f4ef9025f7f4ffb82a4774ea1e9210ff02499d1e2466 |
|
MD5 | ca9f74d2f274a9bdbbab9aa0d01bef0b |
|
BLAKE2b-256 | fd38eb5ef3fcde795ddc1e40eb6333ee82fee08f02f07d5cc0a4f91dba94946a |
File details
Details for the file randomgen-1.16.1-cp27-cp27m-manylinux1_i686.whl
.
File metadata
- Download URL: randomgen-1.16.1-cp27-cp27m-manylinux1_i686.whl
- Upload date:
- Size: 1.6 MB
- Tags: CPython 2.7m
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0b64a9bf18a088f554dc2be33a2eb0dbfc969ae0db82c83ebc841444e2e2ae58 |
|
MD5 | 182303167ec2b69112db295fe62cf25d |
|
BLAKE2b-256 | cb81aca536688098d662404a002c8930d1db94dd2973a84db0ba64d35514b59f |
File details
Details for the file randomgen-1.16.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
.
File metadata
- Download URL: randomgen-1.16.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
- Upload date:
- Size: 1.8 MB
- Tags: CPython 2.7m, macOS 10.10+ intel, macOS 10.10+ x86-64, macOS 10.6+ intel, macOS 10.9+ intel, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1aea41793848687320e48d7e3c29d6b8ebece281d60bcfa6cd7d8cc5458e50de |
|
MD5 | c662879059ea277cd388fcd1d3367de9 |
|
BLAKE2b-256 | f4269da405507f9abc1314aac338501e9e35ba93f1842562cec22228f4e06f1e |