Skip to main content

Random generator supporting multiple PRNGs

Project description

Travis Build Status Appveyor Build Status PyPI version

Random Number Generator using settable Basic RNG interface for future NumPy RandomState evolution.

This is a library and generic interface for alternative random generators in Python and NumPy.

Python 2.7 Support

Release 1.16.0 is the final version that supports Python 2.7. Any bugs in v1.16.0 will be patched until the end of 2019. All future releases are Python 3, with an initial minimum version of 3.5.

Compatibility Warning

RandomGenerator does not support Box-Muller normal variates and so it not 100% compatible with NumPy (or randomstate). Box-Muller normals are slow to generate and all functions which previously relied on Box-Muller normals now use the faster Ziggurat implementation. If you require backward compatibility, a legacy generator, LegacyGenerator, has been created which can fully reproduce the sequence produced by NumPy.

Features

  • Replacement for NumPy’s RandomState

    from randomgen import RandomGenerator, MT19937
    rnd = RandomGenerator(MT19937())
    x = rnd.standard_normal(100)
    y = rnd.random_sample(100)
    z = rnd.randn(10,10)
  • Default random generator is a fast generator called Xoroshiro128plus

  • Support for random number generators that support independent streams and jumping ahead so that sub-streams can be generated

  • Faster random number generation, especially for normal, standard exponential and standard gamma using the Ziggurat method

    from randomgen import RandomGenerator
    # Default basic PRNG is Xoroshiro128
    rnd = RandomGenerator()
    w = rnd.standard_normal(10000, method='zig')
    x = rnd.standard_exponential(10000, method='zig')
    y = rnd.standard_gamma(5.5, 10000, method='zig')
  • Support for 32-bit floating randoms for core generators. Currently supported:

    • Uniforms (random_sample)

    • Exponentials (standard_exponential, both Inverse CDF and Ziggurat)

    • Normals (standard_normal)

    • Standard Gammas (via standard_gamma)

    WARNING: The 32-bit generators are experimental and subject to change.

    Note: There are no plans to extend the alternative precision generation to all distributions.

  • Support for filling existing arrays using out keyword argument. Currently supported in (both 32- and 64-bit outputs)

    • Uniforms (random_sample)

    • Exponentials (standard_exponential)

    • Normals (standard_normal)

    • Standard Gammas (via standard_gamma)

  • Support for Lemire’s method of generating uniform integers on an arbitrary interval by setting use_masked=True.

Included Pseudo Random Number Generators

This module includes a number of alternative random number generators in addition to the MT19937 that is included in NumPy. The RNGs include:

Differences from numpy.random.RandomState

New Features

  • standard_normal, normal, randn and multivariate_normal all use the much faster (100%+) Ziggurat method.

  • standard_gamma and gamma both use the much faster Ziggurat method.

  • standard_exponential exponential both support an additional method keyword argument which can be inv or zig where inv corresponds to the current method using the inverse CDF and zig uses the much faster (100%+) Ziggurat method.

  • Core random number generators can produce either single precision (np.float32) or double precision (np.float64, the default) using the optional keyword argument dtype

  • Core random number generators can fill existing arrays using the out keyword argument

  • Standardizes integer-values random values as int64 for all platforms.

  • randint supports generating using rejection sampling on masked values (the default) or Lemire’s method. Lemire’s method can be much faster when the required interval length is much smaller than the closes power of 2.

New Functions

  • random_entropy - Read from the system entropy provider, which is commonly used in cryptographic applications

  • random_raw - Direct access to the values produced by the underlying PRNG. The range of the values returned depends on the specifics of the PRNG implementation.

  • random_uintegers - unsigned integers, either 32- ([0, 2**32-1]) or 64-bit ([0, 2**64-1])

  • jump - Jumps RNGs that support it. jump moves the state a great distance. Only available if supported by the RNG.

  • advance - Advanced the RNG ‘as-if’ a number of draws were made, without actually drawing the numbers. Only available if supported by the RNG.

Status

  • Builds and passes all tests on:

    • Linux 32/64 bit, Python 2.7, 3.4, 3.5, 3.6

    • PC-BSD (FreeBSD) 64-bit, Python 2.7

    • OSX 64-bit, Python 3.6

    • Windows 32/64 bit, Python 2.7, 3.5 and 3.6

Version

The version matched the latest version of NumPy where RandomGenerator(MT19937()) passes all NumPy test.

Documentation

Documentation for the latest release is available on my GitHub pages. Documentation for the latest commit (unreleased) is available under devel.

Plans

This module is essentially complete. There are a few rough edges that need to be smoothed.

  • Creation of additional streams from where supported (i.e. a next_stream() method)

Requirements

Building requires:

  • Python (2.7, 3.5, 3.6, 3.7)

  • NumPy (1.13, 1.14, 1.15)

  • Cython (0.26+)

  • tempita (0.5+), if not provided by Cython

Testing requires pytest (3.0+).

Note: it might work with other versions but only tested with these versions.

Development and Testing

All development has been on 64-bit Linux, and it is regularly tested on Travis-CI (Linux/OSX) and Appveyor (Windows). The library is occasionally tested on Linux 32-bit and Free BSD 11.1.

Basic tests are in place for all RNGs. The MT19937 is tested against NumPy’s implementation for identical results. It also passes NumPy’s test suite where still relevant.

Installing

Either install from PyPi using

pip install randomgen

or, if you want the latest version,

pip install git+https://github.com/bashtage/randomgen.git

or from a cloned repo,

python setup.py install

SSE2

dSFTM makes use of SSE2 by default. If you have a very old computer or are building on non-x86, you can install using:

python setup.py install --no-sse2

Windows

Either use a binary installer, or if building from scratch, use Python 3.6 with Visual Studio 2015/2017 Community Edition. It can also be build using Microsoft Visual C++ Compiler for Python 2.7 and Python 2.7.

Using

The separate generators are importable from randomgen

from randomgen import RandomGenerator, ThreeFry, PCG64, MT19937
rg = RandomGenerator(ThreeFry())
rg.random_sample(100)

rg = RandomGenerator(PCG64())
rg.random_sample(100)

# Identical to NumPy
rg = RandomGenerator(MT19937())
rg.random_sample(100)

License

Standard NCSA, plus sub licenses for components.

Performance

Performance is promising, and even the mt19937 seems to be faster than NumPy’s mt19937.

Speed-up relative to NumPy (Uniform Doubles)
************************************************************
DSFMT                 184.9%
MT19937                17.3%
PCG32                  83.3%
PCG64                 108.3%
Philox                 -4.9%
ThreeFry              -12.0%
ThreeFry32            -63.9%
Xoroshiro128          159.5%
Xorshift1024          150.4%
Xoshiro256StarStar    145.7%
Xoshiro512StarStar    113.1%

Speed-up relative to NumPy (64-bit unsigned integers)
************************************************************
DSFMT                  17.4%
MT19937                 7.8%
PCG32                  60.3%
PCG64                  73.5%
Philox                -25.5%
ThreeFry              -30.5%
ThreeFry32            -67.8%
Xoroshiro128          124.0%
Xorshift1024          109.4%
Xoshiro256StarStar    100.3%
Xoshiro512StarStar     63.5%

Speed-up relative to NumPy (Standard normals)
************************************************************
DSFMT                 183.0%
MT19937               169.0%
PCG32                 240.7%
PCG64                 231.6%
Philox                131.3%
ThreeFry              118.3%
ThreeFry32             21.6%
Xoroshiro128          332.1%
Xorshift1024          232.4%
Xoshiro256StarStar    306.6%
Xoshiro512StarStar    274.6%

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

randomgen-1.16.1.tar.gz (642.0 kB view details)

Uploaded Source

Built Distributions

randomgen-1.16.1-cp37-cp37m-win_amd64.whl (3.0 MB view details)

Uploaded CPython 3.7m Windows x86-64

randomgen-1.16.1-cp37-cp37m-win32.whl (2.8 MB view details)

Uploaded CPython 3.7m Windows x86

randomgen-1.16.1-cp37-cp37m-manylinux1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.7m

randomgen-1.16.1-cp37-cp37m-manylinux1_i686.whl (1.7 MB view details)

Uploaded CPython 3.7m

randomgen-1.16.1-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

randomgen-1.16.1-cp36-cp36m-win_amd64.whl (3.0 MB view details)

Uploaded CPython 3.6m Windows x86-64

randomgen-1.16.1-cp36-cp36m-win32.whl (2.8 MB view details)

Uploaded CPython 3.6m Windows x86

randomgen-1.16.1-cp36-cp36m-manylinux1_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.6m

randomgen-1.16.1-cp36-cp36m-manylinux1_i686.whl (1.7 MB view details)

Uploaded CPython 3.6m

randomgen-1.16.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

randomgen-1.16.1-cp35-cp35m-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.5m Windows x86-64

randomgen-1.16.1-cp35-cp35m-win32.whl (2.8 MB view details)

Uploaded CPython 3.5m Windows x86

randomgen-1.16.1-cp35-cp35m-manylinux1_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.5m

randomgen-1.16.1-cp35-cp35m-manylinux1_i686.whl (1.7 MB view details)

Uploaded CPython 3.5m

randomgen-1.16.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

randomgen-1.16.1-cp27-cp27mu-manylinux1_x86_64.whl (1.8 MB view details)

Uploaded CPython 2.7mu

randomgen-1.16.1-cp27-cp27mu-manylinux1_i686.whl (1.6 MB view details)

Uploaded CPython 2.7mu

randomgen-1.16.1-cp27-cp27m-win_amd64.whl (2.9 MB view details)

Uploaded CPython 2.7m Windows x86-64

randomgen-1.16.1-cp27-cp27m-win32.whl (2.8 MB view details)

Uploaded CPython 2.7m Windows x86

randomgen-1.16.1-cp27-cp27m-manylinux1_x86_64.whl (1.8 MB view details)

Uploaded CPython 2.7m

randomgen-1.16.1-cp27-cp27m-manylinux1_i686.whl (1.6 MB view details)

Uploaded CPython 2.7m

randomgen-1.16.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (1.8 MB view details)

Uploaded CPython 2.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file randomgen-1.16.1.tar.gz.

File metadata

  • Download URL: randomgen-1.16.1.tar.gz
  • Upload date:
  • Size: 642.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.2

File hashes

Hashes for randomgen-1.16.1.tar.gz
Algorithm Hash digest
SHA256 b34e6889621db21ad1080f2d2952c84059cc463d01d900421d7c1f10b1d2b7dd
MD5 9c8b2cad807ecb5c05be6a5e2328154e
BLAKE2b-256 b0dd8ef4261982a88779d15614b2cabafe78b8364c2f16f28d624d0cae472f38

See more details on using hashes here.

File details

Details for the file randomgen-1.16.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: randomgen-1.16.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.2

File hashes

Hashes for randomgen-1.16.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 bc3f9c5f871a87b3e01d7ae0065cf8cca222ae979a9bc2f37aba63b39aac872d
MD5 25cda77e509198d87e42c1d5a8ef9dbe
BLAKE2b-256 a6c0828c24e838cb1c007c3e3ee39731e5d06fb59109495ea9ae39f95b9de929

See more details on using hashes here.

File details

Details for the file randomgen-1.16.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: randomgen-1.16.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.2

File hashes

Hashes for randomgen-1.16.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 ec81d30c62107799a4ae19436e651afd3123d72a7aeead812029cc2ee451e6c9
MD5 0e18a30b0004a9d4f7ad369f830d9a16
BLAKE2b-256 0307b170b22f1c1743daed522895ac676556e8dd4815f23676d96cabc549423b

See more details on using hashes here.

File details

Details for the file randomgen-1.16.1-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: randomgen-1.16.1-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.3

File hashes

Hashes for randomgen-1.16.1-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 1fae2fd44ac1e5ddd37a8f16b3d18228a330e0880a1a1d8aae1b3bf5b6b3e35e
MD5 41c910bbbf9d590ef9c84554ef6dbaa0
BLAKE2b-256 0bdce587e48dc63a4d6e990a0cdc9bba58a2ffb1005815dc38288780760dd05e

See more details on using hashes here.

File details

Details for the file randomgen-1.16.1-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: randomgen-1.16.1-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.3

File hashes

Hashes for randomgen-1.16.1-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 78ec3c971a6ef4484abfd2e541fa60dcf1403f3c49bdabd08e9e99b0535e60ab
MD5 d520a0d8cb4d319f163a76a3ad6d3352
BLAKE2b-256 ef8be675b2ab6017b787dbfe041ab843d1c7a0acca00c97400d833e6677336af

See more details on using hashes here.

File details

Details for the file randomgen-1.16.1-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for randomgen-1.16.1-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 7943c4c4a0c8e2b7b5f6443fff7078217924adc48eb88a9f21dbf2c315da3778
MD5 435121f437c6f3981d3d72ab1ebe5bd6
BLAKE2b-256 9bb0b233699606bb545f6576e1cde525f7d08c231d38f54c8bb1b1dd8dfb7eb2

See more details on using hashes here.

File details

Details for the file randomgen-1.16.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: randomgen-1.16.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.8

File hashes

Hashes for randomgen-1.16.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 9df98a6d92c55a27d83383b42d6fc1cbd138133102a82268a9d64f701ad3b2a2
MD5 c2ec3541905e0f221a780c37be660f96
BLAKE2b-256 2f4a052649892ec5f91fd9b82633756eaae78d4112cc8ab099b60ca0659aaaaf

See more details on using hashes here.

File details

Details for the file randomgen-1.16.1-cp36-cp36m-win32.whl.

File metadata

  • Download URL: randomgen-1.16.1-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.8

File hashes

Hashes for randomgen-1.16.1-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 cf13db8450e72f3f7f2aeb5fced11a1d64d55c479f3a4748aa99425de4308793
MD5 4cf0366051bbf60177c9cce3f229028c
BLAKE2b-256 3b8c8de0da7bcc4d2d2d255c760522e8dcd679aaf0fea28f178f0ff608391468

See more details on using hashes here.

File details

Details for the file randomgen-1.16.1-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: randomgen-1.16.1-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.3

File hashes

Hashes for randomgen-1.16.1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 1b1b731bb7f9514cac19787f20474f2f49dc97af2c54eb66a8a66205997b577e
MD5 eae5dbb00e892610d7fc055d57a2f294
BLAKE2b-256 f5a734e3262f04996214e8a65e681364c7eceb86618be5e224821931bbd73508

See more details on using hashes here.

File details

Details for the file randomgen-1.16.1-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: randomgen-1.16.1-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.3

File hashes

Hashes for randomgen-1.16.1-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 a1e6b3184c679c1677f2eff5d6644a94456c1b4346f2cf731a0b44214b27f3a9
MD5 cf2c3bf99ee87fb753deb38174113533
BLAKE2b-256 d1b6a17fc587adc1b4ede1114ac1f943c4e7813f3595201b7d41de030f7ad0af

See more details on using hashes here.

File details

Details for the file randomgen-1.16.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for randomgen-1.16.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 419a526a35da896975dd2868a58067776111adcf304213e18cea6ab48d42c6e1
MD5 fbe8821a75ffde9898d2cfbe2806702b
BLAKE2b-256 1459e2672197edc403d8c85ff63242d5bf34fc8bf5768a64afc1aa391c040676

See more details on using hashes here.

File details

Details for the file randomgen-1.16.1-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: randomgen-1.16.1-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.2.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.5.6

File hashes

Hashes for randomgen-1.16.1-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 86ddf1a72f1b5e81c721a65b42f4ef2f6eb92529c0880acb5065c2c853d6f8db
MD5 17c6e1693e353574893c37f12dfc5487
BLAKE2b-256 9fb8f11122d58fcbbe1290ce36397aaef786712f87ff87a8e813e4f84b213d59

See more details on using hashes here.

File details

Details for the file randomgen-1.16.1-cp35-cp35m-win32.whl.

File metadata

  • Download URL: randomgen-1.16.1-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.2.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.5.6

File hashes

Hashes for randomgen-1.16.1-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 561eb4398eecc754c180c9d208a3936d45079a8e850f6afad4015add079dd848
MD5 a3160583015216d86c2df599ef3a2df7
BLAKE2b-256 5848a4f2b93ac423ec4d6e5d6cd56be7e76269de29cbde355e2557bc343c21aa

See more details on using hashes here.

File details

Details for the file randomgen-1.16.1-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: randomgen-1.16.1-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.3

File hashes

Hashes for randomgen-1.16.1-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 fb9197d36dd84d309167f4dc3c9f4b8bec9de75c604a78ee420d98b236431815
MD5 cd8e88342d1f1226637eb4d48a4d129e
BLAKE2b-256 eae57608d72b1bf616cd2c34843c36908585c9820bc69c2510c1b3d3d7800005

See more details on using hashes here.

File details

Details for the file randomgen-1.16.1-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: randomgen-1.16.1-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.3

File hashes

Hashes for randomgen-1.16.1-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 0117e6d77b0229a21246793d2d41f5c7936ba55c8103d0ba2acf2ac7bf98821f
MD5 1b683f39db9fe8b5ad437a44ed864b75
BLAKE2b-256 7622373005e260fce6d20488ccaf1765cfc5190e1a7225e05a63b9bab4edb143

See more details on using hashes here.

File details

Details for the file randomgen-1.16.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for randomgen-1.16.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 cfa384dde8f9e4025f74464be1a22aa69550023d1a35063127a3355a6df64a51
MD5 9f779888f9adecb8a08875aaada5d357
BLAKE2b-256 ad2977c7b59cccb9f63ed9d86868667a0df788a5b2e188b5c361267f3661c213

See more details on using hashes here.

File details

Details for the file randomgen-1.16.1-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

  • Download URL: randomgen-1.16.1-cp27-cp27mu-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.3

File hashes

Hashes for randomgen-1.16.1-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 4fb675304f48bab6bb4737c7b97dda8d1bb3454e1ca27d418ac587f3b189f209
MD5 c5afea9a0cf7ffe5c6479fc09dc89ecc
BLAKE2b-256 5620defe12e7889beeeaf5d57b45ecefc4ea3c0814fd54171ae775e422b9fbb9

See more details on using hashes here.

File details

Details for the file randomgen-1.16.1-cp27-cp27mu-manylinux1_i686.whl.

File metadata

  • Download URL: randomgen-1.16.1-cp27-cp27mu-manylinux1_i686.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.3

File hashes

Hashes for randomgen-1.16.1-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 82b0a46bf95c8eccc10799713abcd6b80b4775e27a90ce19435114d917346b42
MD5 f107a50e117c1ec54976441f8da31fd1
BLAKE2b-256 f1b2d8618ba7ec4431e9a530f7297022678dc2eff1dfb9e7bceb37b9d7639a7b

See more details on using hashes here.

File details

Details for the file randomgen-1.16.1-cp27-cp27m-win_amd64.whl.

File metadata

  • Download URL: randomgen-1.16.1-cp27-cp27m-win_amd64.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 2.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/2.7.16

File hashes

Hashes for randomgen-1.16.1-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 90d17d6b886eb3bf10b3b81f132f19bd0586404250cc7d32e52ccab6518c1dca
MD5 83dcbf058cc9234025583602303fa488
BLAKE2b-256 702273433e99eab560a9d837d98737f0624f559938bba1e84fbeb832e808e8a2

See more details on using hashes here.

File details

Details for the file randomgen-1.16.1-cp27-cp27m-win32.whl.

File metadata

  • Download URL: randomgen-1.16.1-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/2.7.16

File hashes

Hashes for randomgen-1.16.1-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 6dfdfabfe75448aa83a9cde9d4ef91a10d2ba96a553f600a032490c0d285d9c7
MD5 c6a99187f3ad67b21cfa20d0422f512e
BLAKE2b-256 4f2e621c23be1ab0048fbd2c4d65220d3e2a6e2708d4717a1092d3c3918d1a63

See more details on using hashes here.

File details

Details for the file randomgen-1.16.1-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

  • Download URL: randomgen-1.16.1-cp27-cp27m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.3

File hashes

Hashes for randomgen-1.16.1-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 6af34ada4c6a7865f837f4ef9025f7f4ffb82a4774ea1e9210ff02499d1e2466
MD5 ca9f74d2f274a9bdbbab9aa0d01bef0b
BLAKE2b-256 fd38eb5ef3fcde795ddc1e40eb6333ee82fee08f02f07d5cc0a4f91dba94946a

See more details on using hashes here.

File details

Details for the file randomgen-1.16.1-cp27-cp27m-manylinux1_i686.whl.

File metadata

  • Download URL: randomgen-1.16.1-cp27-cp27m-manylinux1_i686.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.3

File hashes

Hashes for randomgen-1.16.1-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 0b64a9bf18a088f554dc2be33a2eb0dbfc969ae0db82c83ebc841444e2e2ae58
MD5 182303167ec2b69112db295fe62cf25d
BLAKE2b-256 cb81aca536688098d662404a002c8930d1db94dd2973a84db0ba64d35514b59f

See more details on using hashes here.

File details

Details for the file randomgen-1.16.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for randomgen-1.16.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 1aea41793848687320e48d7e3c29d6b8ebece281d60bcfa6cd7d8cc5458e50de
MD5 c662879059ea277cd388fcd1d3367de9
BLAKE2b-256 f4269da405507f9abc1314aac338501e9e35ba93f1842562cec22228f4e06f1e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page