Skip to main content

Random generator supporting multiple PRNGs

Project description

Random Number Generator using settable Basic RNG interface for future NumPy RandomState evolution.

Continuous Integration

Travis Build Status Appveyor Build Status

Coverage

Coverage Status codecov

Latest Release

PyPI version Anacnoda Cloud

License

NCSA License BSD License DOI

This is a library and generic interface for alternative random generators in Python and NumPy.

Python 2.7 Support

v1.16 is the final major version that supports Python 2.7. Any bugs in v1.16 will be patched until the end of 2019. All future releases are Python 3, with an initial minimum version of 3.5.

Compatibility Warning

RandomGenerator does not support Box-Muller normal variates and so it not 100% compatible with NumPy (or randomstate). Box-Muller normals are slow to generate and all functions which previously relied on Box-Muller normals now use the faster Ziggurat implementation. If you require backward compatibility, a legacy generator, RandomState, has been created which can fully reproduce the sequence produced by NumPy.

Features

  • Replacement for NumPy’s RandomState

    from randomgen import RandomGenerator, MT19937
    rnd = RandomGenerator(MT19937())
    x = rnd.standard_normal(100)
    y = rnd.random_sample(100)
    z = rnd.randn(10,10)
  • Default random generator is a fast generator called Xoroshiro128plus

  • Support for random number generators that support independent streams and jumping ahead so that sub-streams can be generated

  • Faster random number generation, especially for normal, standard exponential and standard gamma using the Ziggurat method

    from randomgen import RandomGenerator
    # Default basic PRNG is Xoroshiro128
    rnd = RandomGenerator()
    w = rnd.standard_normal(10000)
    x = rnd.standard_exponential(10000)
    y = rnd.standard_gamma(5.5, 10000)
  • Support for 32-bit floating randoms for core generators. Currently supported:

    • Uniforms (random_sample)

    • Exponentials (standard_exponential, both Inverse CDF and Ziggurat)

    • Normals (standard_normal)

    • Standard Gammas (via standard_gamma)

    WARNING: The 32-bit generators are experimental and subject to change.

    Note: There are no plans to extend the alternative precision generation to all distributions.

  • Support for filling existing arrays using out keyword argument. Currently supported in (both 32- and 64-bit outputs)

    • Uniforms (random_sample)

    • Exponentials (standard_exponential)

    • Normals (standard_normal)

    • Standard Gammas (via standard_gamma)

  • Support for Lemire’s method of generating uniform integers on an arbitrary interval by setting use_masked=True.

Included Pseudo Random Number Generators

This module includes a number of alternative random number generators in addition to the MT19937 that is included in NumPy. The RNGs include:

Differences from numpy.random.RandomState

New Features

  • standard_normal, normal, randn and multivariate_normal all use the much faster (100%+) Ziggurat method.

  • standard_gamma and gamma both use the much faster Ziggurat method.

  • standard_exponential exponential both support an additional method keyword argument which can be inv or zig where inv corresponds to the current method using the inverse CDF and zig uses the much faster (100%+) Ziggurat method.

  • Core random number generators can produce either single precision (np.float32) or double precision (np.float64, the default) using the optional keyword argument dtype

  • Core random number generators can fill existing arrays using the out keyword argument

  • Standardizes integer-values random values as int64 for all platforms.

  • randint supports generating using rejection sampling on masked values (the default) or Lemire’s method. Lemire’s method can be much faster when the required interval length is much smaller than the closes power of 2.

New Functions

  • random_entropy - Read from the system entropy provider, which is commonly used in cryptographic applications

  • random_raw - Direct access to the values produced by the underlying PRNG. The range of the values returned depends on the specifics of the PRNG implementation.

  • random_uintegers - unsigned integers, either 32- ([0, 2**32-1]) or 64-bit ([0, 2**64-1])

  • jump - Jumps RNGs that support it. jump moves the state a great distance. Only available if supported by the RNG.

  • advance - Advanced the RNG ‘as-if’ a number of draws were made, without actually drawing the numbers. Only available if supported by the RNG.

Status

  • Builds and passes all tests on:

    • Linux 32/64 bit, Python 2.7, 3.5, 3.6, 3.7

    • PC-BSD (FreeBSD) 64-bit, Python 2.7

    • OSX 64-bit, Python 2.7, 3.5, 3.6, 3.7

    • Windows 32/64 bit, Python 2.7, 3.5 and 3.6, 3.7

Version

The package version matches the latest version of NumPy where RandomState(MT19937()) passes all NumPy test.

Documentation

Documentation for the latest release is available on my GitHub pages. Documentation for the latest commit (unreleased) is available under devel.

Plans

This module is essentially complete. There are a few rough edges that need to be smoothed.

  • Creation of additional streams from where supported (i.e. a next_stream() method)

Requirements

Building requires:

  • Python (2.7, 3.5, 3.6, 3.7)

  • NumPy (1.13, 1.14, 1.15, 1.16)

  • Cython (0.26+)

  • tempita (0.5+), if not provided by Cython

Testing requires pytest (4.0+).

Note: it might work with other versions but only tested with these versions.

Development and Testing

All development has been on 64-bit Linux, and it is regularly tested on Travis-CI (Linux/OSX) and Appveyor (Windows). The library is occasionally tested on Linux 32-bit and Free BSD 11.1.

Basic tests are in place for all RNGs. The MT19937 is tested against NumPy’s implementation for identical results. It also passes NumPy’s test suite where still relevant.

Installing

Either install from PyPi using

pip install randomgen

or, if you want the latest version,

pip install git+https://github.com/bashtage/randomgen.git

or from a cloned repo,

python setup.py install

SSE2

dSFTM makes use of SSE2 by default. If you have a very old computer or are building on non-x86, you can install using:

python setup.py install --no-sse2

Windows

Either use a binary installer, or if building from scratch, use Python 3.6 with Visual Studio 2015/2017 Community Edition. It can also be build using Microsoft Visual C++ Compiler for Python 2.7 and Python 2.7.

Using

The separate generators are importable from randomgen

from randomgen import RandomGenerator, ThreeFry, PCG64, MT19937
rg = RandomGenerator(ThreeFry())
rg.random_sample(100)

rg = RandomGenerator(PCG64())
rg.random_sample(100)

# Identical to NumPy
rg = RandomGenerator(MT19937())
rg.random_sample(100)

License

Standard NCSA, plus sub licenses for components.

Performance

Performance is promising, and even the mt19937 seems to be faster than NumPy’s mt19937.

Speed-up relative to NumPy (Uniform Doubles)
************************************************************
DSFMT                 184.9%
MT19937                17.3%
PCG32                  83.3%
PCG64                 108.3%
Philox                 -4.9%
ThreeFry              -12.0%
ThreeFry32            -63.9%
Xoroshiro128          159.5%
Xorshift1024          150.4%
Xoshiro256StarStar    145.7%
Xoshiro512StarStar    113.1%

Speed-up relative to NumPy (64-bit unsigned integers)
************************************************************
DSFMT                  17.4%
MT19937                 7.8%
PCG32                  60.3%
PCG64                  73.5%
Philox                -25.5%
ThreeFry              -30.5%
ThreeFry32            -67.8%
Xoroshiro128          124.0%
Xorshift1024          109.4%
Xoshiro256StarStar    100.3%
Xoshiro512StarStar     63.5%

Speed-up relative to NumPy (Standard normals)
************************************************************
DSFMT                 183.0%
MT19937               169.0%
PCG32                 240.7%
PCG64                 231.6%
Philox                131.3%
ThreeFry              118.3%
ThreeFry32             21.6%
Xoroshiro128          332.1%
Xorshift1024          232.4%
Xoshiro256StarStar    306.6%
Xoshiro512StarStar    274.6%

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

randomgen-1.16.5.tar.gz (681.1 kB view details)

Uploaded Source

Built Distributions

randomgen-1.16.5-cp37-cp37m-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.7m Windows x86-64

randomgen-1.16.5-cp37-cp37m-win32.whl (3.0 MB view details)

Uploaded CPython 3.7m Windows x86

randomgen-1.16.5-cp37-cp37m-manylinux1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.7m

randomgen-1.16.5-cp37-cp37m-manylinux1_i686.whl (1.8 MB view details)

Uploaded CPython 3.7m

randomgen-1.16.5-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

randomgen-1.16.5-cp36-cp36m-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.6m Windows x86-64

randomgen-1.16.5-cp36-cp36m-win32.whl (3.0 MB view details)

Uploaded CPython 3.6m Windows x86

randomgen-1.16.5-cp36-cp36m-manylinux1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.6m

randomgen-1.16.5-cp36-cp36m-manylinux1_i686.whl (1.8 MB view details)

Uploaded CPython 3.6m

randomgen-1.16.5-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

randomgen-1.16.5-cp35-cp35m-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.5m Windows x86-64

randomgen-1.16.5-cp35-cp35m-win32.whl (3.0 MB view details)

Uploaded CPython 3.5m Windows x86

randomgen-1.16.5-cp35-cp35m-manylinux1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.5m

randomgen-1.16.5-cp35-cp35m-manylinux1_i686.whl (1.7 MB view details)

Uploaded CPython 3.5m

randomgen-1.16.5-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

randomgen-1.16.5-cp27-cp27mu-manylinux1_x86_64.whl (1.9 MB view details)

Uploaded CPython 2.7mu

randomgen-1.16.5-cp27-cp27mu-manylinux1_i686.whl (1.7 MB view details)

Uploaded CPython 2.7mu

randomgen-1.16.5-cp27-cp27m-win_amd64.whl (3.0 MB view details)

Uploaded CPython 2.7m Windows x86-64

randomgen-1.16.5-cp27-cp27m-win32.whl (2.9 MB view details)

Uploaded CPython 2.7m Windows x86

randomgen-1.16.5-cp27-cp27m-manylinux1_x86_64.whl (1.9 MB view details)

Uploaded CPython 2.7m

randomgen-1.16.5-cp27-cp27m-manylinux1_i686.whl (1.7 MB view details)

Uploaded CPython 2.7m

randomgen-1.16.5-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (1.9 MB view details)

Uploaded CPython 2.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file randomgen-1.16.5.tar.gz.

File metadata

  • Download URL: randomgen-1.16.5.tar.gz
  • Upload date:
  • Size: 681.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3

File hashes

Hashes for randomgen-1.16.5.tar.gz
Algorithm Hash digest
SHA256 959ef3af6756552ae894215bde420255ad8c12b973c33ea75fa768b0e98631b9
MD5 bd61a34422ba78c3c736899ac9b9ae38
BLAKE2b-256 60d94c3bf6f96f6e6c9cdcd0d7c7e5d12a4e9d3f3e036b000647d97fd4099beb

See more details on using hashes here.

File details

Details for the file randomgen-1.16.5-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: randomgen-1.16.5-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3

File hashes

Hashes for randomgen-1.16.5-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 60af4316324ab69df40c4f401e33d7714502912b6ba160e99b4fd326d071f6e2
MD5 c45e0bc5cb49755de524808621098c61
BLAKE2b-256 f41013dad3d23e5c7165c04988bd650cc17d080033c707c8b9b2f630c961f81d

See more details on using hashes here.

File details

Details for the file randomgen-1.16.5-cp37-cp37m-win32.whl.

File metadata

  • Download URL: randomgen-1.16.5-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3

File hashes

Hashes for randomgen-1.16.5-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 87d8f6da4f4e30598ba18530253320ca835c1de76c787e4c295c120b7e634b4b
MD5 071b8aa21fdb16b51d26aacac41dc4c3
BLAKE2b-256 917672750b71a3efde3d3551fbacfcbba908fc35156a8007cc1409a1f36f4e3c

See more details on using hashes here.

File details

Details for the file randomgen-1.16.5-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: randomgen-1.16.5-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.7

File hashes

Hashes for randomgen-1.16.5-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 3dccef1e9a5bff2b7305d967747492f34adfa8fd8d74c139a864e1147731d7e8
MD5 d9183b361dbf3844643d4988018a36f1
BLAKE2b-256 bf75944834b468daadfac3b775f08359c551a6b09ed6210bdd2076c97496cf9b

See more details on using hashes here.

File details

Details for the file randomgen-1.16.5-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: randomgen-1.16.5-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.7

File hashes

Hashes for randomgen-1.16.5-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 b5d073aff7cabfbce9591159a4ba8881a972300195c02c121dcc23ab30b593f7
MD5 59bd0f703d222b4098e1475ec37af01d
BLAKE2b-256 7a04b874a79c6d596e3a9bf01da9afe852790c7977938477904dc3f93dfe7aa2

See more details on using hashes here.

File details

Details for the file randomgen-1.16.5-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for randomgen-1.16.5-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 a4632e8764172a836ca3fe1717ef80642902b7fb8691be1045ccb0a0f6ae5b22
MD5 8c8549651968c2aa2e95d334261910a0
BLAKE2b-256 afc86e123304c77d37dae3d5dc14a32270cbf9f5dd2d311419bcf66f9651287a

See more details on using hashes here.

File details

Details for the file randomgen-1.16.5-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: randomgen-1.16.5-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.8

File hashes

Hashes for randomgen-1.16.5-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 2a0ce8a3990c24b360f5642ec6680806799a83a8617558fc51433992102ac40c
MD5 b3c947ffc9201d133e9128e2c8e49202
BLAKE2b-256 c9e191a8b195c01f16b56dde9fa1527951e68481eb7860278847e7a5b59ee106

See more details on using hashes here.

File details

Details for the file randomgen-1.16.5-cp36-cp36m-win32.whl.

File metadata

  • Download URL: randomgen-1.16.5-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.8

File hashes

Hashes for randomgen-1.16.5-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 6bf668600a77a01b87a0b2772418f94cd6d4fc990807cebb81033444b31f43b8
MD5 7c72257997799c7c05aa94c27695069b
BLAKE2b-256 78e7093bebcf204a6131e423d140dc1664a1753941f96c33002eb9a0a6759726

See more details on using hashes here.

File details

Details for the file randomgen-1.16.5-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: randomgen-1.16.5-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.7

File hashes

Hashes for randomgen-1.16.5-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 44455a381395101f9f29da61162330305f2bbb1482a9492fbdc2a968d4f3a288
MD5 2d210f13e0298b6bcca3ed88cdb92c1a
BLAKE2b-256 e091508ee58714852cb86ce4b225a711be1110ddbd80deedcaf66894114fc2f9

See more details on using hashes here.

File details

Details for the file randomgen-1.16.5-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: randomgen-1.16.5-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.7

File hashes

Hashes for randomgen-1.16.5-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 97112871b71ba12374d1f2a13374d727a3d109229fc79a57f21c701d2c8315f1
MD5 c5d757cc3adcc1464878f59815dc2e8d
BLAKE2b-256 edc404494bb74ad477d7e26beaaff10b06e265bc6fe38d5b0807e4d1b51853fe

See more details on using hashes here.

File details

Details for the file randomgen-1.16.5-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for randomgen-1.16.5-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 5a472b6f94a44a0f7fb77c22d9bb89a70c7d9d44aabe4b7a8c828f320a6aeb0c
MD5 586c91f43e79e5a5782b682a92418b66
BLAKE2b-256 ff19f084e84bc1ab96e767c6bec5236226a7b25fd5ea32d16f8692b887c387a2

See more details on using hashes here.

File details

Details for the file randomgen-1.16.5-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: randomgen-1.16.5-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.2.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.5.6

File hashes

Hashes for randomgen-1.16.5-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 6712f7f692e091eaa5f8feef0c8abe451667eca54816c92d8c905a7e6225f492
MD5 3fb9aa820a39ddc587e44bc9c440d04c
BLAKE2b-256 b407d82ab7085b6fcd634f690455430a417c9e42e181cd9f7d21798aa49ae1b2

See more details on using hashes here.

File details

Details for the file randomgen-1.16.5-cp35-cp35m-win32.whl.

File metadata

  • Download URL: randomgen-1.16.5-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.2.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.5.6

File hashes

Hashes for randomgen-1.16.5-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 585c415c1989104d79f425b6efb017af480b43ef0671327b05d20afb76765533
MD5 0d3f8534e1a93dbc43fc443cfb4ad48f
BLAKE2b-256 db248c04ba13bef4605542d21583ba462de9c392858856953cb3d0bb4d7cf161

See more details on using hashes here.

File details

Details for the file randomgen-1.16.5-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: randomgen-1.16.5-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.7

File hashes

Hashes for randomgen-1.16.5-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f9114d6f9c657a8989e89699f2dda54861cbc1a4e9e0d6963df65ce27408beee
MD5 c4d9c091877e43dcc6f5b82cdcb17487
BLAKE2b-256 1ee5012d0a579b8c46ad91e1a379caa0c0483a7828e03cc9cf92d89585fcf228

See more details on using hashes here.

File details

Details for the file randomgen-1.16.5-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: randomgen-1.16.5-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.7

File hashes

Hashes for randomgen-1.16.5-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 ba5c5cec812e205c0778695e0928adcf8b589893e3066432fb4968cb4a15c59e
MD5 3cfcb784c815b4fd5ec427be3c36f253
BLAKE2b-256 f2042cd2aa30e689ad00c9f7a36e2b7e7ca8b93ba18f66522e68f27721a3bb7d

See more details on using hashes here.

File details

Details for the file randomgen-1.16.5-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for randomgen-1.16.5-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 e58d06113d170d72b7518a3ed1f57fc613b5ba376ce6a50b50f5c19a4c54e89f
MD5 ea34b8b7c53df896f91d0500931ccba0
BLAKE2b-256 0904dcd86810e3f276e972f67042aeb1aa3b54545b932047b22f99194c046706

See more details on using hashes here.

File details

Details for the file randomgen-1.16.5-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

  • Download URL: randomgen-1.16.5-cp27-cp27mu-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.7

File hashes

Hashes for randomgen-1.16.5-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 540f0dacb4474fb749b00701e831ecc178b91000e270ae62b56641945cfc4ae4
MD5 5bbfebdf58c04764e3b50c545b4c340e
BLAKE2b-256 36994313d3cd81e9c0b32ddaa471938ad7cb957aae9a36885d1fc244aea578c1

See more details on using hashes here.

File details

Details for the file randomgen-1.16.5-cp27-cp27mu-manylinux1_i686.whl.

File metadata

  • Download URL: randomgen-1.16.5-cp27-cp27mu-manylinux1_i686.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.7

File hashes

Hashes for randomgen-1.16.5-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 9fbf05c7055d2af629f59b8fb8e4e231ec2e9627895dad01eba4f14760136a9a
MD5 f4d1def232364c8a76505d41acfe16bc
BLAKE2b-256 19fee4629debe3c511c426ecd3d25a6c43725350e6e890936a34887eac933e6a

See more details on using hashes here.

File details

Details for the file randomgen-1.16.5-cp27-cp27m-win_amd64.whl.

File metadata

  • Download URL: randomgen-1.16.5-cp27-cp27m-win_amd64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 2.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/2.7.16

File hashes

Hashes for randomgen-1.16.5-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 bd41678748a0f2e54f9f2fde803107c9a9187f699ace12bdf81db7dad0c25c04
MD5 3cacb13812d10a190f8e519abef0f228
BLAKE2b-256 c94fcaa27fa92491fe06cfa692f0f2a4182aa2609b8286befcb504caba8a5fc4

See more details on using hashes here.

File details

Details for the file randomgen-1.16.5-cp27-cp27m-win32.whl.

File metadata

  • Download URL: randomgen-1.16.5-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/2.7.16

File hashes

Hashes for randomgen-1.16.5-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 3390bb218ec700883450406ee30916b85d8959b555480487d3af4e3f3b18ff6e
MD5 fdce8b21e2dbe235e246d3fafa9effd7
BLAKE2b-256 a484b32df3367424578fd02d881197d5245134acd308e3be37b7ea9daa0ca9c5

See more details on using hashes here.

File details

Details for the file randomgen-1.16.5-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

  • Download URL: randomgen-1.16.5-cp27-cp27m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.7

File hashes

Hashes for randomgen-1.16.5-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 dd59c59a90acd40bd725e429f216602e5bc38a4e8afc28f8073086333874a062
MD5 234707bf47ca4c952ee1b1196684c50f
BLAKE2b-256 ba50336f0dcae8aba184b1899816d022adcb6907f22e193c6ec0b7e4f2c9cc90

See more details on using hashes here.

File details

Details for the file randomgen-1.16.5-cp27-cp27m-manylinux1_i686.whl.

File metadata

  • Download URL: randomgen-1.16.5-cp27-cp27m-manylinux1_i686.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.7

File hashes

Hashes for randomgen-1.16.5-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 4068c810be96d98222bc955d757e0a3ca29988ece9fc9514885b5e1fc0eaaa03
MD5 48599692c46fe39a0855d0475a76d3eb
BLAKE2b-256 bcf81c4eda7f9b062b06e5dad418743d6b96464df1e1cbe47bc8ad49a974c03c

See more details on using hashes here.

File details

Details for the file randomgen-1.16.5-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for randomgen-1.16.5-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 a8c5707ad82ba2f089ed1bfef333f93c2791f6b3fe390d6865fc06e4a1cb86b1
MD5 a991fdcbb98d3e870ee7467233a4b906
BLAKE2b-256 3c4ec8d070cbd840ff5bbe0609d2abb88908527111f29c74103bb4dcbca4b5d7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page