Skip to main content

A Package for running prompt decoders like RankVicuna

Project description

RankLLM

PyPI Downloads Downloads Generic badge LICENSE

We offer a suite of prompt decoders, albeit with a current focus on RankVicuna. Some of the code in this repository is borrowed from RankGPT!

Releases

current_version = 0.2.5

📟 Instructions

Create Conda Environment

conda create -n rankllm python=3.10
conda activate rankllm

Install Pytorch with CUDA

pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

Install Dependencies

pip install -r requirements.txt

Run end to end Test

python src/rank_llm/scripts/run_rank_llm.py  --model_path=castorini/rank_zephyr_7b_v1_full --top_k_candidates=100 --dataset=dl20 \
--retrieval_method=SPLADE++_EnsembleDistil_ONNX --prompt_mode=rank_GPT  --context_size=4096 --variable_passages

🦙🐧 Model Zoo

The following is a table of our models hosted on HuggingFace:

Model Name Hugging Face Identifier/Link
RankZephyr 7B V1 - Full - BF16 castorini/rank_zephyr_7b_v1_full
RankVicuna 7B - V1 castorini/rank_vicuna_7b_v1
RankVicuna 7B - V1 - No Data Augmentation castorini/rank_vicuna_7b_v1_noda
RankVicuna 7B - V1 - FP16 castorini/rank_vicuna_7b_v1_fp16
RankVicuna 7B - V1 - No Data Augmentation - FP16 castorini/rank_vicuna_7b_v1_noda_fp16

✨ References

If you use RankLLM, please cite the following relevant papers:

[2309.15088] RankVicuna: Zero-Shot Listwise Document Reranking with Open-Source Large Language Models

@ARTICLE{pradeep2023rankvicuna,
  title   = {{RankVicuna}: Zero-Shot Listwise Document Reranking with Open-Source Large Language Models},
  author  = {Ronak Pradeep and Sahel Sharifymoghaddam and Jimmy Lin},
  year    = {2023},
  journal = {arXiv:2309.15088}
}

[2312.02724] RankZephyr: Effective and Robust Zero-Shot Listwise Reranking is a Breeze!

@ARTICLE{pradeep2023rankzephyr,
  title   = {{RankZephyr}: Effective and Robust Zero-Shot Listwise Reranking is a Breeze!},
  author  = {Ronak Pradeep and Sahel Sharifymoghaddam and Jimmy Lin},
  year    = {2023},
  journal = {arXiv:2312.02724}
}

🙏 Acknowledgments

This research is supported in part by the Natural Sciences and Engineering Research Council (NSERC) of Canada.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rank-llm-0.2.5.tar.gz (32.6 kB view details)

Uploaded Source

Built Distribution

rank_llm-0.2.5-py3-none-any.whl (37.6 kB view details)

Uploaded Python 3

File details

Details for the file rank-llm-0.2.5.tar.gz.

File metadata

  • Download URL: rank-llm-0.2.5.tar.gz
  • Upload date:
  • Size: 32.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.13

File hashes

Hashes for rank-llm-0.2.5.tar.gz
Algorithm Hash digest
SHA256 eac365190576577890188b1ae2dd294e120a987d357bb3c93b7ed91370aec4aa
MD5 8a81e663f85962da26d12da9dcb05d00
BLAKE2b-256 4455c00a267ea7d98dc2094345b07631392f9a8720fa37a5e90d754655ae800d

See more details on using hashes here.

File details

Details for the file rank_llm-0.2.5-py3-none-any.whl.

File metadata

  • Download URL: rank_llm-0.2.5-py3-none-any.whl
  • Upload date:
  • Size: 37.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.13

File hashes

Hashes for rank_llm-0.2.5-py3-none-any.whl
Algorithm Hash digest
SHA256 2741dd5f6856ced542bbff4e0f7fc281432e796e5d577976f774625921be3f8b
MD5 68425361e3765f2436f9a40a198be22b
BLAKE2b-256 e3b1ea25f23aa01f2b91221a17e85beeeb8f87e2c02a8576d8d2bca81383c28c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page