Skip to main content

A Package for running prompt decoders like RankVicuna

Project description

RankLLM

PyPI Downloads Downloads Generic badge LICENSE

We offer a suite of prompt decoders, albeit with a current focus on RankVicuna. Some of the code in this repository is borrowed from RankGPT!

Releases

current_version = 0.2.6

📟 Instructions

Create Conda Environment

conda create -n rankllm python=3.10
conda activate rankllm

Install Pytorch with CUDA

pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

Install Dependencies

pip install -r requirements.txt

Run end to end Test

python src/rank_llm/scripts/run_rank_llm.py  --model_path=castorini/rank_zephyr_7b_v1_full --top_k_candidates=100 --dataset=dl20 \
--retrieval_method=SPLADE++_EnsembleDistil_ONNX --prompt_mode=rank_GPT  --context_size=4096 --variable_passages

🦙🐧 Model Zoo

The following is a table of our models hosted on HuggingFace:

Model Name Hugging Face Identifier/Link
RankZephyr 7B V1 - Full - BF16 castorini/rank_zephyr_7b_v1_full
RankVicuna 7B - V1 castorini/rank_vicuna_7b_v1
RankVicuna 7B - V1 - No Data Augmentation castorini/rank_vicuna_7b_v1_noda
RankVicuna 7B - V1 - FP16 castorini/rank_vicuna_7b_v1_fp16
RankVicuna 7B - V1 - No Data Augmentation - FP16 castorini/rank_vicuna_7b_v1_noda_fp16

✨ References

If you use RankLLM, please cite the following relevant papers:

[2309.15088] RankVicuna: Zero-Shot Listwise Document Reranking with Open-Source Large Language Models

@ARTICLE{pradeep2023rankvicuna,
  title   = {{RankVicuna}: Zero-Shot Listwise Document Reranking with Open-Source Large Language Models},
  author  = {Ronak Pradeep and Sahel Sharifymoghaddam and Jimmy Lin},
  year    = {2023},
  journal = {arXiv:2309.15088}
}

[2312.02724] RankZephyr: Effective and Robust Zero-Shot Listwise Reranking is a Breeze!

@ARTICLE{pradeep2023rankzephyr,
  title   = {{RankZephyr}: Effective and Robust Zero-Shot Listwise Reranking is a Breeze!},
  author  = {Ronak Pradeep and Sahel Sharifymoghaddam and Jimmy Lin},
  year    = {2023},
  journal = {arXiv:2312.02724}
}

🙏 Acknowledgments

This research is supported in part by the Natural Sciences and Engineering Research Council (NSERC) of Canada.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rank-llm-0.2.6.tar.gz (33.6 kB view details)

Uploaded Source

Built Distribution

rank_llm-0.2.6-py3-none-any.whl (38.1 kB view details)

Uploaded Python 3

File details

Details for the file rank-llm-0.2.6.tar.gz.

File metadata

  • Download URL: rank-llm-0.2.6.tar.gz
  • Upload date:
  • Size: 33.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.13

File hashes

Hashes for rank-llm-0.2.6.tar.gz
Algorithm Hash digest
SHA256 c809b3b08fb0e314b65607e19ee4c6fb66262bd80b0963d9f97224aac0ee3a99
MD5 0aa4a93a7e9863ecadb1bebe825dfafd
BLAKE2b-256 e3642d1b88754a328b3f7198dd952af076807cab30c927edb2ddf1f9431176da

See more details on using hashes here.

File details

Details for the file rank_llm-0.2.6-py3-none-any.whl.

File metadata

  • Download URL: rank_llm-0.2.6-py3-none-any.whl
  • Upload date:
  • Size: 38.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.13

File hashes

Hashes for rank_llm-0.2.6-py3-none-any.whl
Algorithm Hash digest
SHA256 98bfcb313006e0eca7b2756013a094a406f68ab543680b2c33454fd2a53e4a4c
MD5 6f81aa7c2c1ca3fde308084e87c6b0e4
BLAKE2b-256 be97c6e14e65ed0b18e32ee77cb5a152babc03652a6c27c993c4d52404de28db

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page