Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continuous Integration PyPI package version Conda Version Python versions
Documentation Code Coverage GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation
  5. It can be largely used as a drop in replacement for fuzzywuzzy. However there are a couple API differences described here

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++17 capable compiler.

git clone --recursive https://github.com/rapidfuzz/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.
Note that from RapidFuzz 3.0.0, strings are not preprocessed(removing all non alphanumeric characters, trimming whitespaces, converting all characters to lower case) by default. Which means that when comparing two strings that have the same characters but different cases("this is a word", "THIS IS A WORD") their similarity score value might be different, so when comparing such strings you might see a difference in score value compared to previous versions. Some examples of string matching with preprocessing can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and distance.

Simple Ratio

> from rapidfuzz import fuzz
> fuzz.ratio("this is a test", "this is a test!")
96.55172413793103

Partial Ratio

> from rapidfuzz import fuzz
> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> from rapidfuzz import fuzz
> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.9090909090909
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> from rapidfuzz import fuzz
> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
84.21052631578947
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Weighted Ratio

> from rapidfuzz import fuzz
> fuzz.WRatio("this is a test", "this is a new test!!!")
85.5

> from rapidfuzz import fuzz, utils
> # Removing non alpha numeric characters("!") from the string
> fuzz.WRatio("this is a test", "this is a new test!!!", processor=utils.default_process) # here "this is a new test!!!" is converted to "this is a new test"
95.0
> fuzz.WRatio("this is a test", "this is a new test")
95.0

> # Converting string to lower case
> fuzz.WRatio("this is a word", "THIS IS A WORD")
21.42857142857143
> fuzz.WRatio("this is a word", "THIS IS A WORD", processor=utils.default_process) # here "THIS IS A WORD" is converted to "this is a word"
100.0

Quick Ratio

> from rapidfuzz import fuzz
> fuzz.QRatio("this is a test", "this is a new test!!!")
80.0

> from rapidfuzz import fuzz, utils
> # Removing non alpha numeric characters("!") from the string
> fuzz.QRatio("this is a test", "this is a new test!!!", processor=utils.default_process)
87.5
> fuzz.QRatio("this is a test", "this is a new test")
87.5

> # Converting string to lower case
> fuzz.QRatio("this is a word", "THIS IS A WORD")
21.42857142857143
> fuzz.QRatio("this is a word", "THIS IS A WORD", processor=utils.default_process)
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 76.92307692307692, 1), ('New York Giants', 64.28571428571428, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
('Dallas Cowboys', 83.07692307692308, 3)

> # With preprocessing
> from rapidfuzz import process, fuzz, utils
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2, processor=utils.default_process)
[('New York Jets', 100.0, 1), ('New York Giants', 78.57142857142857, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio, processor=utils.default_process)
('Dallas Cowboys', 90.0, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparison between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparison I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
    "".join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
    for _ in range(10_000)
]
samples = words[:: len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
    for word in words:
        scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with cdist in the following way:

cdist(samples, words, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like cdist is a lot faster than directly using it. That's why they should be used whenever possible.

Benchmark cdist

Support the project

If you are using RapidFuzz for your work and feel like giving a bit of your own benefit back to support the project, consider sending us money through GitHub Sponsors or PayPal that we can use to buy us free time for the maintenance of this great library, to fix bugs in the software, review and integrate code contributions, to improve its features and documentation, or to just take a deep breath and have a cup of tea every once in a while. Thank you for your support.

Support the project through GitHub Sponsors or via PayPal:

.

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. That's why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-3.9.1.tar.gz (1.6 MB view details)

Uploaded Source

Built Distributions

rapidfuzz-3.9.1-pp310-pypy310_pp73-win_amd64.whl (1.6 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-3.9.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-3.9.1-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (5.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-3.9.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-3.9.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded PyPy macOS 11.0+ ARM64

rapidfuzz-3.9.1-pp310-pypy310_pp73-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-3.9.1-pp39-pypy39_pp73-win_amd64.whl (1.6 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-3.9.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-3.9.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (5.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-3.9.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-3.9.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded PyPy macOS 11.0+ ARM64

rapidfuzz-3.9.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-3.9.1-pp38-pypy38_pp73-win_amd64.whl (1.6 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-3.9.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-3.9.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (5.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-3.9.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-3.9.1-pp38-pypy38_pp73-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded PyPy macOS 11.0+ ARM64

rapidfuzz-3.9.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-3.9.1-cp312-cp312-win_arm64.whl (857.2 kB view details)

Uploaded CPython 3.12 Windows ARM64

rapidfuzz-3.9.1-cp312-cp312-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

rapidfuzz-3.9.1-cp312-cp312-win32.whl (1.8 MB view details)

Uploaded CPython 3.12 Windows x86

rapidfuzz-3.9.1-cp312-cp312-musllinux_1_2_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

rapidfuzz-3.9.1-cp312-cp312-musllinux_1_2_s390x.whl (3.3 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ s390x

rapidfuzz-3.9.1-cp312-cp312-musllinux_1_2_ppc64le.whl (2.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ppc64le

rapidfuzz-3.9.1-cp312-cp312-musllinux_1_2_i686.whl (7.2 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ i686

rapidfuzz-3.9.1-cp312-cp312-musllinux_1_2_aarch64.whl (2.4 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

rapidfuzz-3.9.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.9.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ s390x

rapidfuzz-3.9.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.9.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (5.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

rapidfuzz-3.9.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.9.1-cp312-cp312-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

rapidfuzz-3.9.1-cp312-cp312-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

rapidfuzz-3.9.1-cp311-cp311-win_arm64.whl (862.8 kB view details)

Uploaded CPython 3.11 Windows ARM64

rapidfuzz-3.9.1-cp311-cp311-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.11 Windows x86-64

rapidfuzz-3.9.1-cp311-cp311-win32.whl (1.8 MB view details)

Uploaded CPython 3.11 Windows x86

rapidfuzz-3.9.1-cp311-cp311-musllinux_1_2_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

rapidfuzz-3.9.1-cp311-cp311-musllinux_1_2_s390x.whl (3.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ s390x

rapidfuzz-3.9.1-cp311-cp311-musllinux_1_2_ppc64le.whl (2.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ppc64le

rapidfuzz-3.9.1-cp311-cp311-musllinux_1_2_i686.whl (7.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ i686

rapidfuzz-3.9.1-cp311-cp311-musllinux_1_2_aarch64.whl (2.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

rapidfuzz-3.9.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.9.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

rapidfuzz-3.9.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.9.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (5.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

rapidfuzz-3.9.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.9.1-cp311-cp311-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

rapidfuzz-3.9.1-cp311-cp311-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

rapidfuzz-3.9.1-cp310-cp310-win_arm64.whl (861.8 kB view details)

Uploaded CPython 3.10 Windows ARM64

rapidfuzz-3.9.1-cp310-cp310-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-3.9.1-cp310-cp310-win32.whl (1.8 MB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-3.9.1-cp310-cp310-musllinux_1_2_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

rapidfuzz-3.9.1-cp310-cp310-musllinux_1_2_s390x.whl (3.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ s390x

rapidfuzz-3.9.1-cp310-cp310-musllinux_1_2_ppc64le.whl (2.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ppc64le

rapidfuzz-3.9.1-cp310-cp310-musllinux_1_2_i686.whl (7.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ i686

rapidfuzz-3.9.1-cp310-cp310-musllinux_1_2_aarch64.whl (2.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

rapidfuzz-3.9.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.9.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

rapidfuzz-3.9.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.9.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (6.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

rapidfuzz-3.9.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.9.1-cp310-cp310-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-3.9.1-cp310-cp310-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-3.9.1-cp39-cp39-win_arm64.whl (863.7 kB view details)

Uploaded CPython 3.9 Windows ARM64

rapidfuzz-3.9.1-cp39-cp39-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-3.9.1-cp39-cp39-win32.whl (1.8 MB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-3.9.1-cp39-cp39-musllinux_1_2_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

rapidfuzz-3.9.1-cp39-cp39-musllinux_1_2_s390x.whl (3.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ s390x

rapidfuzz-3.9.1-cp39-cp39-musllinux_1_2_ppc64le.whl (2.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ppc64le

rapidfuzz-3.9.1-cp39-cp39-musllinux_1_2_i686.whl (7.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ i686

rapidfuzz-3.9.1-cp39-cp39-musllinux_1_2_aarch64.whl (2.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARM64

rapidfuzz-3.9.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.9.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

rapidfuzz-3.9.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.9.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (5.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

rapidfuzz-3.9.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.9.1-cp39-cp39-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-3.9.1-cp39-cp39-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-3.9.1-cp38-cp38-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-3.9.1-cp38-cp38-win32.whl (1.8 MB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-3.9.1-cp38-cp38-musllinux_1_2_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

rapidfuzz-3.9.1-cp38-cp38-musllinux_1_2_s390x.whl (3.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ s390x

rapidfuzz-3.9.1-cp38-cp38-musllinux_1_2_ppc64le.whl (2.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ppc64le

rapidfuzz-3.9.1-cp38-cp38-musllinux_1_2_i686.whl (7.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ i686

rapidfuzz-3.9.1-cp38-cp38-musllinux_1_2_aarch64.whl (2.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ARM64

rapidfuzz-3.9.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.9.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

rapidfuzz-3.9.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.9.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (5.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

rapidfuzz-3.9.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.9.1-cp38-cp38-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-3.9.1-cp38-cp38-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-3.9.1.tar.gz.

File metadata

  • Download URL: rapidfuzz-3.9.1.tar.gz
  • Upload date:
  • Size: 1.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for rapidfuzz-3.9.1.tar.gz
Algorithm Hash digest
SHA256 a42eb645241f39a59c45a7fc15e3faf61886bff3a4a22263fd0f7cfb90e91b7f
MD5 c8040987e4d93d7d543a12c2d1f04f20
BLAKE2b-256 e8949cf5188f6e13e58dec8a1f9f6bb201a66b42108de39ad239f6556ea7fc87

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 06879b598e798a4d33a283c2b4fa0d555d7706b6531e3321b161d62e986f7f57
MD5 386befff58d23814e5446976df9adecd
BLAKE2b-256 8c9b32cb83decd52c31a89f39f144822d64ae5f645f1e6a2c3b856a5f5337611

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b8a6d5a8edc452920efdf1b499a2a47bb8a28440f7ab3fe28bb7d6636ccf71c3
MD5 1fedb82cf4f51366275870fe5a47c5f7
BLAKE2b-256 a506f245a1238f0595ad16acba30d0a4c1cf52ebd94e692e1ac46510c24b24fd

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 97ab8f153984a5d827ebb5a5b80ee59563efcf2fa3e569dcd46ea7e7c9845e93
MD5 7f2eb78d805834af3510eec8d13cbabc
BLAKE2b-256 f21a65d7c0350eb7f6fdda598597aae163b2634c7bacb93410c0608c4b1fad27

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9f9dfdcd75e16e5874efee233b28aec1322623b0f1f20641452d06ea2d8ba5ef
MD5 ec71d4eaafd3f800d14d457de31da0fd
BLAKE2b-256 63f2ea7405c4630634117662c7d7858182c1327bd9f3ae147e73bdb45791463f

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9f74d93148081049ccc86f276d54cd7c8c0692250245660b4fcd904ed1db1e01
MD5 da707df23fea964243acda3bcb13f6ce
BLAKE2b-256 89d2c0386e3e4494c811c8b6ea36e4d95431445ae2c32426f629037799911b19

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-pp310-pypy310_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-pp310-pypy310_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dc4b5de5d6f9347d836d849b56bca630169353cbe5c10fa7fe93bb1677b49770
MD5 003aa88744c5502f5ac23d40f7f0e949
BLAKE2b-256 8644ca1c6434932ba28f2113d0aa1fb0610431dcbeb66e00de06b214ef16e653

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 d2ff268a8bf57a76512804d5ca2097afaf98e64e8947d514cde7e2e8446aa5f7
MD5 3c7c2f5e093be40d90252aea6de840b6
BLAKE2b-256 17ee59a072b79f1ed322224e0a5dd9aeb4cc87c024f0a3643d651316b62f4ffb

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e18f0e9351f7e5d5387774ff4d5cabd824341e16b866eb1c8d3f557111b447ef
MD5 e053bbd96ec16b1262fcce3635f3a373
BLAKE2b-256 596351829d43731df9b17db69b3af197a9dbec617c7ec3ea338417694f79ff65

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1539e7439b68013c5d2ab7ed9d3d221480a15595207764145ae177077d28016d
MD5 8cb1b28c3a441648dfb79501e834cac6
BLAKE2b-256 be37b077c1c0eb8587c44ed1066fa6d4ae19bac5eaff32ec44fba42a3639f9b6

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 414644a2fc8a3e5fafda95b430214ed892faa4d0a07401d33892bc9ca5c84974
MD5 7f3bdf7ab375d2087034a66793d8c5fe
BLAKE2b-256 7c1599094b264e4f37b21f075dc6d68309d6d7fdc7fd8f3443cfbf7cb506d984

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c6b11a38b61cc2462a113b123f5e932cda0e525f816d6fe4b68516f97d7f9d49
MD5 915c29ad5e5d61ea1b100b6f0bfb10cb
BLAKE2b-256 f65b30345e62f0b66f242de99ff5f39047eea02148662fc9185900c680511a34

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a47550eabf235e5d50e7d448c18f77f6e8082aa3571e9df511c8388525ea9372
MD5 53c314af8f666c5075c797958b7496f7
BLAKE2b-256 b6c8e99960aa7504c68d83b33022c36b1541dafbdd2bb7304c9a3a2c8959755e

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 53477e1e6d85d603c9a319cfd00ab9f0a57b6d68bcdb268d6b15a79e64d693d0
MD5 62ff4a24ef260c390d068a53e74a357c
BLAKE2b-256 7f870b7822ac16decc69034cd0e1ed788692d19ae6729d7e367daa8006ea1b0d

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 eb3f1af099cd1d98001691fbdadd422f088f21eadcacf5698b393b7569e24dc4
MD5 e95a275f048bf273ae16ebedbbf38902
BLAKE2b-256 4eb17c4d4e162a0c3447ee8ce8c2f5442932f0d0a0826c6797021b58c340b57f

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 5713c56b30ed75ada3a8f008cf8e8e6323386ce48fac2bf2d07285fe6c91f5a4
MD5 b56f3880fbca9eb4eb02e04dacfd7adf
BLAKE2b-256 a2f1392cbf936d0940304b99205d931ba09b6ac15657bfcc8c20ccf2b2698285

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bc4503841cd3cbe22b5ac44f15bc834ec97d811a3c3943f73f5643266c8674e1
MD5 fcd2520f82fef0d975b22a5c541fbf93
BLAKE2b-256 cf69ac5da8d1c03b675dac534d5288a4a6b0804c49f2d550541bf01932811840

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-pp38-pypy38_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-pp38-pypy38_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d3da444890c9559fd15717d97f8373b1cd14007f68c9b037aa93ef7ca969b559
MD5 3d079586035688eab92f8cd97e4ca7f3
BLAKE2b-256 3c390dee2e9c1f57e7e2949d9cd9fa6c48435fb7b1f2ab9120cb07f6d5427057

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0f906ab6220778404498e0ce255c4cc89f98ea5e656e54cc59c5813c877eb86b
MD5 e093917f9f165abb7f24c1ae2b8bd561
BLAKE2b-256 4b7a55c84fcb0a6542dbdc15130e0b24e04976cc33ba5a66eb6d024ddf8274de

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp312-cp312-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 829fbad93266fffa0f9d722a94cbb1b95b53e3c04be4e872193496a0cfbd66f0
MD5 1596acd15dd172951a0dcacb4ae4a51f
BLAKE2b-256 7d0b796319ed27d2eabadfb30fbc31e6aec9bfe56f0439733484aff7a3da4bb1

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 e58489934d0147f1edda693cb983bea40f2b45ae6756fd47c1005b538f817a2f
MD5 85e0eb31f3975b516d4e9102092b815c
BLAKE2b-256 562f2b5bba74bc58d9ed18266450618fed68bbb3206245d5cfd39681cfc7b813

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp312-cp312-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.9.1-cp312-cp312-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for rapidfuzz-3.9.1-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 b71e7f99ed048a338e4a1ac34f56b3b3933a3ba2dfbb04450c786a8ddd97f4db
MD5 6bf7c14f2d8fb804a13cbb809fd6aeb7
BLAKE2b-256 1a3f249cf26481831919a0ad0e4121938d0aa833a7b849d4432d6a61cb50a01d

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 a3a48fc6dc274b803a366a4baec99e212792ae1b1e73d42235b2042cd3ade7c1
MD5 85a1da8ff00845c572d8a3d416da698f
BLAKE2b-256 9486a6dfd2a1da44a8d11446ab636a88e475675760e1ed33c5bfbcf170601d15

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp312-cp312-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp312-cp312-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 2f9044a4470343087cde10beaa36266519d5da110a9a4597b43e6aa35fa928d3
MD5 b347c9ad980a3677b8738d329cbe5996
BLAKE2b-256 a47399dbf102e04be8133686eeb3a15035bb2b8a6f887f931dcea68ead878542

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp312-cp312-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp312-cp312-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 b26cc9459e096959fab3a4a8a17b96a6c7c961f9db5c37c1c3c7a06789316cf7
MD5 33c1dec2391d83d34cfa03c27cc84a54
BLAKE2b-256 62d1fac9ab13bfe611daf5f954612ecba3dbf2d3303a66796d7df4761cf0087f

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 a89b219c1a7933a0673b2dbb1ffe701057d82e5cb843552be4f55b61b557031e
MD5 ef5e7ade2150a21eafba8f169c569b84
BLAKE2b-256 39c0891c9914e12c3edd11070878d9fa88c4493049d2ed634f7c9cee793d784c

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 32718fa69306df969bf4fca1719f8900b83df315a2a8153942d5b8906f4fd1d6
MD5 2799bcfcf6465f2a85625fa9689d2929
BLAKE2b-256 f1a3dca4bd9936a8152444e9df5a78e3fd43e986a0fd4a6b9fa12f1f6765d6cc

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7f006c3af82c478df09a790fb4846b5acd00a187d75715674d71f5dc0ac982ce
MD5 d6b2b1d0034e28a17732979af63afddb
BLAKE2b-256 eea7eaf2661266b30f3a8691a312c74a14bcaf3122db5d7efaa31939ecda0776

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 1e872627d5359c840f3e431b0beb263518048917c3e076f624870552d84e7dc6
MD5 72544468906c051a54c5935caa6b6dc3
BLAKE2b-256 667ccb43b93abad637c116c61cce39252549d1fab1625cf016c719c82f1cc753

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 9bfa8c0a8ce09b4bcd36322f8f375750dca160fbdbeb2e763a695cef3ae9133e
MD5 3e6273ebb5e7b2091c806f330c664aeb
BLAKE2b-256 6b0c21b774eb745fb91d80bb646852407385f6a7fcfc5907b39acbbc1a2cbbf5

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4a231e8f3bae82f10e7188965b37c91d8bfb80136595c860c8a08eb0dd07764d
MD5 b3c51dc3ff4303905c37d80ec5ff61ce
BLAKE2b-256 a3b7fd0e62dd0994beae2bd41de8558406d928ba14f826b032c2f0d0ef69ee42

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0ceb0d7bdec910d93793d32633ba0cb644356cf6778f9d91b727da0075beaec1
MD5 1d84d0863a1a0c0fade051a2bf074617
BLAKE2b-256 8206b845e48e00675e1a116b2b3a9970a52bdead4f2ce0c51952425285c4fdbf

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0edc950c6a04c19db10670cd04e33403b3eb0f175deb620f9668595d378b1005
MD5 df2218288958561bc01c3af0f3560299
BLAKE2b-256 7ad086e446e06ac091ecac81c67f9a1ca0ade971016d8698c2d6f60facb1a602

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8781e45c56f7f3a64940f4d594a4ffd69360147925a706569b2b0c57347b2225
MD5 0cb06bd49c14ba41c9132d444cff2ce9
BLAKE2b-256 a26303cf0f7019e11b40977511ed50238883448e8d10a6c7b0adfdfffef61fdf

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp311-cp311-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 bcc0ffcaeb1e499e708f32ec30177ed690b3f25455c91ad8c2240986c69f9ebe
MD5 9e6309e938acf09f3ea2457021644b3a
BLAKE2b-256 fa22dfcfce9eb146667e1103cfb0b14d53a976a70e7c4b254df3491b29596913

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 0e931539edeb9158ef83537cd571051f8a9608737642c20b088a37bd5d76c5c9
MD5 c6373006378d27d715812839fe301bf2
BLAKE2b-256 ba688f6b7b51a50172fe8109fbe408734a2c3c37ab00d6f1641b2d88998000f1

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp311-cp311-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.9.1-cp311-cp311-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for rapidfuzz-3.9.1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 eadf8c4b24b63aef8810ed585c24ac1fc022ee771211772a6e9f78c63aa949ff
MD5 820e18c38ca0d1d553ad145d79bf6047
BLAKE2b-256 da7e5efbbbe8f7d8f644079163a092137332534909361b9e2aabf7b85ed608fa

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 08f85d6674d804a493c3e9ec10a807f9bd8f482781487eda064913b537f99d7f
MD5 23455faade639a56035bc4611115dfb9
BLAKE2b-256 479f2c890564bedc9d0910453f49b789b84f70edb15e6d931b93099ae9863668

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp311-cp311-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp311-cp311-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 5d8eb7fe39e81dc1530a3ec81a35e69770839c76607c461eb9d0902427fab3e1
MD5 ffbec8f0e192e4e8c8253e6e71fc3ab1
BLAKE2b-256 b95e5b46004b0cb58d82f3a86d1380e75596b3afcdbbfdbaf49e899d042e72a5

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp311-cp311-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp311-cp311-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 874317057a58a9c6ddf59fe1491e478217daa9fdb043a00358a15de4f62f9a2d
MD5 720966fb322907b700ee27c2c4c841be
BLAKE2b-256 d77ca7ec58aff148975f26137eb5f2851cd1b91f9c9658d7322f16ec2b43e437

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 c6437cba4b9460d5ee0bafd796e13ef9307091b81685bbe745b0f1619fb887ca
MD5 9f3f8441d4ec430c849f3af54ebcd89a
BLAKE2b-256 147b3c92bfabc1ca55efde8bd4242da431b52ec7185c590058506955650f1820

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 dec2792f864be731c8339cad99001caa6540aa909e6fd8bc688bb0419c501f44
MD5 75f756e2691503f28e508fe8c21b9020
BLAKE2b-256 c7a2fb5dbe0c3c6fb2913fbad3bbd2c1af51f8a6d1c87ee7ed17b0bb693f6ccf

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 177bddf50577db59bcb00b6f7a5c2b70f2ec5a2aba40c8add7a6f7fd8609224e
MD5 f65e941b97dfe3e48fb68091a11f5204
BLAKE2b-256 10e05f9094bcb52cbb3b682755c0999581ad06477de28321f0286c88f694a169

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 50c2f7ad132dfeb6247c90b41431662af939a820f761cf930708d55912377ed8
MD5 30b4d295d86db0fbd869a2e48c89f503
BLAKE2b-256 0b40a6345c652332770daaef0ef5f15dfcfa87d433afd155f629d836fc5265db

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 76a55bcc3abc9f8e38a1218cb5a09719126cfc4cba23ebd8caa27dfdc69cedd8
MD5 de5ad6f99bd25f42b15bdc21dc864dfa
BLAKE2b-256 71ce418fcff8274d7929914f7515113900517b4f25c122d567b5aec5255467b5

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c125095d1828fa10ac79077594dd2d8829167d9e184e20baa97620fc52ebdcc9
MD5 1c93a51560ace5f4b676d0adb04f6c4f
BLAKE2b-256 a43f834d7e9befe4db03242c19a674c71b8f23f490026c0af1d6b43271dd7c65

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 07decc6b058f935d2219423a50aac426027928cc734809f793bc250de4a3756e
MD5 6ddb8b290ebd0c217dd1f9d18134c661
BLAKE2b-256 f1492fd3a520010a1f639fd8e8a28cb49af880a6105e5ba4f0395308553e0517

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9f66f9d5f14141b4b017e76118ec4bda29266f6b281989026e3a9ba1a2aaf032
MD5 dbd6514b63fbfde2fd5a7d6abb21bb7c
BLAKE2b-256 82936c2667af072c13a7d2fe1c1ee823b68932bc73cb02d8a7777fb485dc4a8f

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f8869dcf072227a40a6f9e87b3fc4eb020055a08ad12b63d751c354e3a973ccb
MD5 75a3f656394bc2578f5700b78d08d650
BLAKE2b-256 c82c7782a9e56b112c1d2830e673a80d638ccc6a5f7c5832ae8ba5fec61ff9dc

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp310-cp310-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 da3f495cf4f7a443b34a6d3c6805265595fcd13641b3253a8e2034289d828dd9
MD5 3823a633bd11c461b4c497c1799c2aa7
BLAKE2b-256 8ca01506bb46a33bf881af37c0f78ae2ae37dac9ada5cd31658065ddd5d2f6d7

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 c99d001c45c31c2cd2f7361bc2036d3062b21db5f43beea8bc5109d43fe9f283
MD5 4ceb3fc87c144cf7b0a07adc6861053f
BLAKE2b-256 0f94191483784c6dbc6ffe28570e123df9ca7e3c0ed9ca1ba8c7a16912faff27

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.9.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for rapidfuzz-3.9.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 2ef42c43c94139c890aeec40bc442c4bf8d48e15b456a88ce0f4cc5cfcad1896
MD5 c945c885a1736deca8d7ed80d37c5177
BLAKE2b-256 4169c96e3e7082004ef6464c173301d6be566c042ef245a9ca8df2d0c6b57339

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 64058f4a3698c6c8464df47a3b7da303db2477b2447142da3e67fc091f4c366a
MD5 3387a769c9ff4ea9ea7e794b6a3d1e79
BLAKE2b-256 0c8e5169254fcfc86780b39eacf957717f5163f677d1e8ca66ad883ecfd143fb

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp310-cp310-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp310-cp310-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 9f8615a2a67a1f80b3aa7a3d7fbe6a2ed062a54c98988e3f9b664b49a3bc115e
MD5 2a0514a0e7e32db8499de1cc48a5da37
BLAKE2b-256 4d0ca36e0542e26c752099cd1e3696ced1595d4f377fae01a90a83f8b5c6e048

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp310-cp310-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp310-cp310-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 02ed579f35ddd3552c7f74bc0c10800b432d9b09a4cebb19fd7a10b3b4759cc0
MD5 391e500e7fbd7aa6d97ba004e61ba3b7
BLAKE2b-256 5135a9d4a9ae2deea086fd5059a1405a7e3b51be22e92ddb1d328fdedceeb7d6

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 8e11405d81e8baea4999a5757a982009566cff8f6a121d5ccf042aab81ae0230
MD5 3f695347dbe86def537d9628931192e3
BLAKE2b-256 5d6e89916014461976b168c607d92cd2609509c25446de01b1f2139bbed1e894

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 c883d2d2e31c759af1f3fdeb67ec151cf94e307f745b3d02ab3a2ef6595485f2
MD5 65076fd3792b22d3d81f94cbded2cd07
BLAKE2b-256 82981e9d27d971b8aa70ec655093de8c1e8fddd85891d494a7054b790b3e5ce5

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 eb023adfefa62410fff877f7cc70cd4758cbfbad963e87d146cf71b022dce197
MD5 c84f9cb35afd0d3169ec2aa61fb1ca78
BLAKE2b-256 30ad4188617ce1200cc6580785e405c0cab3105cb7329894aa2dbcf2d870530a

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 fb592bad9d58b47c6681f0c180767d2c98775a35f7267131d33723139c3d6c2e
MD5 0d7741d3e0da65aea160d619a563df03
BLAKE2b-256 e46a033dc932b2b26948b27d081f8203dea9fffac6c1abf50989483b95c4d534

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 25ea055ae40fb60f503f02b44b3ac35a39a9108be33f89e05b81bc4e3c849ec8
MD5 1cb0a0355dab6c643da0e62a46bc889f
BLAKE2b-256 a2feee3a231ab48e36ea67501147483be751844307724829eeeea899ff577652

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 aa44aef769e5834fef4fde091fd646cc1c52a2813b3aa241ae54b3028960abaa
MD5 401fc2b3f99c5d506f452f7f29d111c1
BLAKE2b-256 f80d84e4bba22a0d88783cef267ac3052d4eac56732abda77e7baf8e9f0c94f3

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e4c6b6455ee8404a663e15477a8bfe98b1afb329ff224bcf6d15f623a3761b95
MD5 f78a7ee6f6f9de0febadb55b7d9fa4e1
BLAKE2b-256 2d6f1c7f4df4c4216b1ada0d844932666ae13b982d163470498defc747dabfd0

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 83c570ce23b447625929c0e7c4f2eab6d90f5a576db2b26a5aa0594a53d560ea
MD5 974ba38638b3e38d7708483c9c504c18
BLAKE2b-256 cb9dbb2a9877b2a1380e63660f42599d422dccc5c5fdd72ba1150c13c8b02061

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5f897a9bff517d5c6af6a90131796b4298b547b9a9a4df3cf285006be33aae5b
MD5 521b55556b3e3c538c797d8da77f2c3e
BLAKE2b-256 176ebfeaf21c6884ebad70d6bcd7d612776c3c86d94acd5fbf70cde51d98bd93

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: rapidfuzz-3.9.1-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 863.7 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for rapidfuzz-3.9.1-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 998977df2ae01ff8b7bc3b29a860b4a863005e0533e323df3fd555a31ef33f0e
MD5 73974f01eb7ee86dc6b5bd16c03640de
BLAKE2b-256 1575748e1e7af1bebe2c846883bb6f82be55dc2ff3345af643c5a1c1abc7ba1f

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-3.9.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for rapidfuzz-3.9.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ce3335324198e1388a1c4e50d40f45107367010afe9fa09fd46278160f0ab591
MD5 75299a1e7c6880e1c34e4715df396bde
BLAKE2b-256 c74ace36ee117486d6e83f223a2228d6175dceb00585578d92dc583b185514b4

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.9.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for rapidfuzz-3.9.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 61b343c581f4926260248069d8fdbbbf293c19c12ef440ad5ced15bcff277a84
MD5 372789d1e6c11c4171a7a7f80531a2e1
BLAKE2b-256 cf5dfc308fbe8db401582da58bf0b86fe5d6056ef610ceede6b25b031bd7327d

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 aaba665f92c011c6f284e933ab02b5dc129a6d3f48fce913ec4a214bd530135e
MD5 34f1acfbd90d170409d816802451d62e
BLAKE2b-256 c06ffa63bf39cc221821d31979751139a88c52b267077bebbf0f16e70213ee73

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp39-cp39-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp39-cp39-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 e5d7b3154f6df9e05c2016de5e95f8cba4fe636a4e5520ebcd89bc6c54b8e4ed
MD5 713a25f8a59b7539b8cf9a1f389b9d2f
BLAKE2b-256 be27e526a94c3ffe8860044c46610aec85d192d4cd6d569f494ee779bb03075e

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp39-cp39-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp39-cp39-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 fbce66cb2e331b0888c79b594eab76e2c609c2637050085daadff5325d471dc2
MD5 2220006ae70f474f0e38a47786112031
BLAKE2b-256 0f162cd29fb0fe8d16f1bce67f89c8df7a83016a1df8f6463fa921eb47c15a49

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp39-cp39-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp39-cp39-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 03a0a4bc8d4bd3e6f882b4c2ac183825a9b6dabe7e5a97bb6a1075e4635c944d
MD5 dd15d2275d5553bf5e32ec96be0f92ad
BLAKE2b-256 3c049e6b82fc0066514a36b97f7133b2aba161a2976c0e8fa62e4485672f73e6

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 a645f362dafc103dbe7f43a2ad34f76284773cd7d1b00514d1c591848a1c817f
MD5 ca5c3abad2f02f118efcb66355409f38
BLAKE2b-256 41e51544d011d377060dbfdc89e4b090547cb418900f78f472ca773fe66ee91e

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 349e9c15092d20a1f6ff1795e068f39a9ee5e84c54b3addbc66d0ac469c4ef43
MD5 7b379a04114d5552a2773078575a66ec
BLAKE2b-256 83a240a5b494e48cfe0316ffbeb72b76ae5a63e708f7ed54ef4b83c2652d7817

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 e9f075366cee63a6b06bd7f9285eb9f1785382a6493afcb7054202e20508bf94
MD5 4232c7037acc99fdd5a2bbb0c2966a70
BLAKE2b-256 796b9772103fd598717712ce430799325a995f082117c266d93f24f03a8150cb

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 c0899de4fc1a7a36f14be556a0dacf40ea5c0fe22c6b45b2ea2674e1ac47e269
MD5 92cfb3c06a377d5539438aad1de46faf
BLAKE2b-256 5ed7595dbf6aa51cfe3f72ffe7dda69b663cbf6c633f3032e24e16a5c5d17bf7

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 5dbcc4add07bd60ea73b94392fed28f83dba0fe796097da47627fd539bd6daca
MD5 0bec7a65333b9583925a8a96949fbc6a
BLAKE2b-256 e09954e462b1b2879dbca5c7afef5f6f7f5dccd1c1612bceed408962119d5cd9

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 77767b119ac05662d216a8cc4092ac28dbc015d9caabebdbefe371b0dd82a38e
MD5 f569e842523fce71cfe92e5944419e5f
BLAKE2b-256 3f1a13b30056e4a01c010dcf0fa5241aa6d373a7bbc577315dc9141034cfd801

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bc68fb8f2a8b5b3a4526b7a65e7d5c7f821882f56d9dcbcce4c6859a9e5bdcd7
MD5 0bd7804353b7498948685b8a484470e4
BLAKE2b-256 235ab1170db85c205a84b6d9ae5545d28f4a953999d9a45670373456086bee19

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c8b0e6640421e55d69e186ce7fb9e6c723cfd3b6f91beaeb28705c2a46c8a194
MD5 faaac4f5619b295ae0cb2c798caef1bf
BLAKE2b-256 53d3c004069b41868a3358e6292308fdd0efcd9a49a2d698d691692d00e160c3

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-3.9.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for rapidfuzz-3.9.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 493354f50b9855271ac846b213e394e08446e70cef5cc033e5302a2220f3ae7b
MD5 9c88294ec6bd9f5325e90b04bc4d18d7
BLAKE2b-256 556f60526870cce0f3bed8c97dfb9f8b1f4d1016b63a151b22e8d5a64fc579ee

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.9.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for rapidfuzz-3.9.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 bf5184b17e26a82b00c7ee05d9ec5d826113df55830bbc447bf6d6e7469c70fb
MD5 839cc3f326fe16ec077e76d53c965716
BLAKE2b-256 d1cc6d86f76afac4c85f7ebc18c727be76f156d8156fe6d9704a8a4ef4ec6a45

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 3ab6ad7e70469aed24e24378b19a9e47fc757c847399b22c612a0fccacc795cb
MD5 0047e3ad6e4493404abcf94d37a9f222
BLAKE2b-256 568b5f41a49f61c7a17c67e3291717fb43c647e85448b1c5dabb34cbf35eff4d

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp38-cp38-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp38-cp38-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 ea62c82eb2c65bd49651e95f4f46874483ae4da1c3b57997e58f1b4fb2de6c05
MD5 fa14b5d354a7046f10c082ad0cf7998a
BLAKE2b-256 86502a772056b1132b24d68175a3b85fd8b558824a8e5570ccc134a47cb1c255

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp38-cp38-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp38-cp38-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 f6f4e8235d0acf1972f5eb4091c4a0473e5670a754f166c0c718ce21e945f879
MD5 be7832e271056445f7f1218e68e38760
BLAKE2b-256 049fe4e5b3bc7b41fc33b5e741ff12abfc3994df2b1bc006970342c5651a6375

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp38-cp38-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp38-cp38-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 a079164675d24eb715230bf9dd252683ae3c9c0c0a236f0b8098630268b899e9
MD5 c90ab3980477391b52829ae51e00803e
BLAKE2b-256 ffa0ece547d2cda4ce3cb867a9def92db9ed754d53b64f7a0303639e82e4d128

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp38-cp38-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp38-cp38-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 0c568b89a5016e76f0b3f85e9379036da99c5e7ec26b33935453d353a1938b74
MD5 8d7051f128cd0507e7d6f4624f9773c6
BLAKE2b-256 2e96ab725660586ffe1a4c76904c2efd163f0a64165ed64fb1ddc67622d0c107

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7149afaf0294882b6b15bb6fa9fc38ff1d761e50117460ee3561181c1c4e2230
MD5 7ca009e42faec1d65cc01461191cf8d5
BLAKE2b-256 5cff41bac20ab92b4a9da8a813b2a8cd82993abc727c31d05da461d4ad8aa528

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 08dcd347d408912b6da778a73a0d7a2adad7fe238a44263e5e3789f2a8d84669
MD5 de949f46cfc773827e6c7d60b35647cb
BLAKE2b-256 b28f516eb15a7a9a9bd2c10311b613295b20ffb9c7546307b42dfa45e88e5f30

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 678fcaa5117ddb6263160a7c5f33cc9ea3df335465f5d53715707fad103e1d09
MD5 5072de557fbd189e6514a40c3157b775
BLAKE2b-256 db0b8718b09656ad58635caadd23c26b03b05ff594c503f58ac2ac194171c054

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8e70605350cb6ec5091e06de62d3dcb058f694b059b4e1a9d85bfbf892f70030
MD5 a38ae38470b76687b3ac88e60f37486f
BLAKE2b-256 af5f1c19fb87f15200b67d2938543d5900cc5f48d0568f27b28a266f2b64a957

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 df7bba8d4a8fb8e7559a9e83dfc5385dc6fe89efd73e32d253667242faf1883c
MD5 b6bed497f1ec58ba1ec310ae7d4dc844
BLAKE2b-256 92b413233f7262cb04134daf9b595a869cd15b4f11b531e4d97dc3be03ac7461

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d3397630f22e6c60dda8be3e9dbcf6a341695d487df8a6c92f4a2f7ebcdaecf7
MD5 f8eba4a0d683a3579605bf21d45853ad
BLAKE2b-256 749115ded3e3771238c7e72d42e198d597cacb211a3349e579d31cc11885e5ba

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bca2b93c75f87cd85832cdd5bb06b4b5642e2a05c8e3550841ddf5d564ce4abb
MD5 f869f3b4bdebdf2751dc3347ac104379
BLAKE2b-256 7c044849d8753349ad63bf0fcffbd9eb0ed71d77739446df86bc9d9d45db5493

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page