Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continuous Integration PyPI package version Conda Version Python versions
Documentation Code Coverage GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation
  5. It can be largely used as a drop in replacement for fuzzywuzzy. However there are a couple API differences described here

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++17 capable compiler.

git clone --recursive https://github.com/rapidfuzz/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.
Note that from RapidFuzz 3.0.0, strings are not preprocessed(removing all non alphanumeric characters, trimming whitespaces, converting all characters to lower case) by default. Which means that when comparing two strings that have the same characters but different cases("this is a word", "THIS IS A WORD") their similarity score value might be different, so when comparing such strings you might see a difference in score value compared to previous versions. Some examples of string matching with preprocessing can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and distance.

Simple Ratio

> from rapidfuzz import fuzz
> fuzz.ratio("this is a test", "this is a test!")
96.55172413793103

Partial Ratio

> from rapidfuzz import fuzz
> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> from rapidfuzz import fuzz
> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.9090909090909
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> from rapidfuzz import fuzz
> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
84.21052631578947
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0
# Returns 100.0 if one string is a subset of the other, regardless of extra content in the longer string
> fuzz.token_set_ratio("fuzzy was a bear but not a dog", "fuzzy was a bear")
100.0
# Score is reduced only when there is explicit disagreement in the two strings
> fuzz.token_set_ratio("fuzzy was a bear but not a dog", "fuzzy was a bear but not a cat")
92.3076923076923

Weighted Ratio

> from rapidfuzz import fuzz
> fuzz.WRatio("this is a test", "this is a new test!!!")
85.5

> from rapidfuzz import fuzz, utils
> # Removing non alpha numeric characters("!") from the string
> fuzz.WRatio("this is a test", "this is a new test!!!", processor=utils.default_process) # here "this is a new test!!!" is converted to "this is a new test"
95.0
> fuzz.WRatio("this is a test", "this is a new test")
95.0

> # Converting string to lower case
> fuzz.WRatio("this is a word", "THIS IS A WORD")
21.42857142857143
> fuzz.WRatio("this is a word", "THIS IS A WORD", processor=utils.default_process) # here "THIS IS A WORD" is converted to "this is a word"
100.0

Quick Ratio

> from rapidfuzz import fuzz
> fuzz.QRatio("this is a test", "this is a new test!!!")
80.0

> from rapidfuzz import fuzz, utils
> # Removing non alpha numeric characters("!") from the string
> fuzz.QRatio("this is a test", "this is a new test!!!", processor=utils.default_process)
87.5
> fuzz.QRatio("this is a test", "this is a new test")
87.5

> # Converting string to lower case
> fuzz.QRatio("this is a word", "THIS IS A WORD")
21.42857142857143
> fuzz.QRatio("this is a word", "THIS IS A WORD", processor=utils.default_process)
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 76.92307692307692, 1), ('New York Giants', 64.28571428571428, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
('Dallas Cowboys', 83.07692307692308, 3)

> # With preprocessing
> from rapidfuzz import process, fuzz, utils
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2, processor=utils.default_process)
[('New York Jets', 100.0, 1), ('New York Giants', 78.57142857142857, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio, processor=utils.default_process)
('Dallas Cowboys', 90.0, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparison between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparison I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
    "".join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
    for _ in range(10_000)
]
samples = words[:: len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
    for word in words:
        scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with cdist in the following way:

cdist(samples, words, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like cdist is a lot faster than directly using it. That's why they should be used whenever possible.

Benchmark cdist

Support the project

If you are using RapidFuzz for your work and feel like giving a bit of your own benefit back to support the project, consider sending us money through GitHub Sponsors or PayPal that we can use to buy us free time for the maintenance of this great library, to fix bugs in the software, review and integrate code contributions, to improve its features and documentation, or to just take a deep breath and have a cup of tea every once in a while. Thank you for your support.

Support the project through GitHub Sponsors or via PayPal:

.

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. That's why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-3.9.2.tar.gz (1.6 MB view details)

Uploaded Source

Built Distributions

rapidfuzz-3.9.2-pp310-pypy310_pp73-win_amd64.whl (1.6 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-3.9.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-3.9.2-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (5.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-3.9.2-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-3.9.2-pp310-pypy310_pp73-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded PyPy macOS 11.0+ ARM64

rapidfuzz-3.9.2-pp310-pypy310_pp73-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-3.9.2-pp39-pypy39_pp73-win_amd64.whl (1.6 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-3.9.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-3.9.2-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (5.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-3.9.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-3.9.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded PyPy macOS 11.0+ ARM64

rapidfuzz-3.9.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-3.9.2-pp38-pypy38_pp73-win_amd64.whl (1.6 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-3.9.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-3.9.2-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (5.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-3.9.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-3.9.2-pp38-pypy38_pp73-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded PyPy macOS 11.0+ ARM64

rapidfuzz-3.9.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-3.9.2-cp312-cp312-win_arm64.whl (857.4 kB view details)

Uploaded CPython 3.12 Windows ARM64

rapidfuzz-3.9.2-cp312-cp312-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

rapidfuzz-3.9.2-cp312-cp312-win32.whl (1.8 MB view details)

Uploaded CPython 3.12 Windows x86

rapidfuzz-3.9.2-cp312-cp312-musllinux_1_2_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

rapidfuzz-3.9.2-cp312-cp312-musllinux_1_2_s390x.whl (3.3 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ s390x

rapidfuzz-3.9.2-cp312-cp312-musllinux_1_2_ppc64le.whl (2.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ppc64le

rapidfuzz-3.9.2-cp312-cp312-musllinux_1_2_i686.whl (7.2 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ i686

rapidfuzz-3.9.2-cp312-cp312-musllinux_1_2_aarch64.whl (2.4 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

rapidfuzz-3.9.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.9.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ s390x

rapidfuzz-3.9.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.9.2-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (5.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

rapidfuzz-3.9.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.9.2-cp312-cp312-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

rapidfuzz-3.9.2-cp312-cp312-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

rapidfuzz-3.9.2-cp311-cp311-win_arm64.whl (863.0 kB view details)

Uploaded CPython 3.11 Windows ARM64

rapidfuzz-3.9.2-cp311-cp311-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.11 Windows x86-64

rapidfuzz-3.9.2-cp311-cp311-win32.whl (1.8 MB view details)

Uploaded CPython 3.11 Windows x86

rapidfuzz-3.9.2-cp311-cp311-musllinux_1_2_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

rapidfuzz-3.9.2-cp311-cp311-musllinux_1_2_s390x.whl (3.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ s390x

rapidfuzz-3.9.2-cp311-cp311-musllinux_1_2_ppc64le.whl (2.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ppc64le

rapidfuzz-3.9.2-cp311-cp311-musllinux_1_2_i686.whl (7.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ i686

rapidfuzz-3.9.2-cp311-cp311-musllinux_1_2_aarch64.whl (2.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

rapidfuzz-3.9.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.9.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

rapidfuzz-3.9.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.9.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (5.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

rapidfuzz-3.9.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.9.2-cp311-cp311-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

rapidfuzz-3.9.2-cp311-cp311-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

rapidfuzz-3.9.2-cp310-cp310-win_arm64.whl (862.0 kB view details)

Uploaded CPython 3.10 Windows ARM64

rapidfuzz-3.9.2-cp310-cp310-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-3.9.2-cp310-cp310-win32.whl (1.8 MB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-3.9.2-cp310-cp310-musllinux_1_2_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

rapidfuzz-3.9.2-cp310-cp310-musllinux_1_2_s390x.whl (3.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ s390x

rapidfuzz-3.9.2-cp310-cp310-musllinux_1_2_ppc64le.whl (2.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ppc64le

rapidfuzz-3.9.2-cp310-cp310-musllinux_1_2_i686.whl (7.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ i686

rapidfuzz-3.9.2-cp310-cp310-musllinux_1_2_aarch64.whl (2.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

rapidfuzz-3.9.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.9.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

rapidfuzz-3.9.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.9.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (6.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

rapidfuzz-3.9.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.9.2-cp310-cp310-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-3.9.2-cp310-cp310-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-3.9.2-cp39-cp39-win_arm64.whl (863.9 kB view details)

Uploaded CPython 3.9 Windows ARM64

rapidfuzz-3.9.2-cp39-cp39-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-3.9.2-cp39-cp39-win32.whl (1.8 MB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-3.9.2-cp39-cp39-musllinux_1_2_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

rapidfuzz-3.9.2-cp39-cp39-musllinux_1_2_s390x.whl (3.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ s390x

rapidfuzz-3.9.2-cp39-cp39-musllinux_1_2_ppc64le.whl (2.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ppc64le

rapidfuzz-3.9.2-cp39-cp39-musllinux_1_2_i686.whl (7.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ i686

rapidfuzz-3.9.2-cp39-cp39-musllinux_1_2_aarch64.whl (2.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARM64

rapidfuzz-3.9.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.9.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

rapidfuzz-3.9.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.9.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (5.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

rapidfuzz-3.9.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.9.2-cp39-cp39-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-3.9.2-cp39-cp39-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-3.9.2-cp38-cp38-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-3.9.2-cp38-cp38-win32.whl (1.8 MB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-3.9.2-cp38-cp38-musllinux_1_2_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

rapidfuzz-3.9.2-cp38-cp38-musllinux_1_2_s390x.whl (3.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ s390x

rapidfuzz-3.9.2-cp38-cp38-musllinux_1_2_ppc64le.whl (2.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ppc64le

rapidfuzz-3.9.2-cp38-cp38-musllinux_1_2_i686.whl (7.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ i686

rapidfuzz-3.9.2-cp38-cp38-musllinux_1_2_aarch64.whl (2.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ARM64

rapidfuzz-3.9.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.9.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

rapidfuzz-3.9.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.9.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (5.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

rapidfuzz-3.9.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.9.2-cp38-cp38-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-3.9.2-cp38-cp38-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-3.9.2.tar.gz.

File metadata

  • Download URL: rapidfuzz-3.9.2.tar.gz
  • Upload date:
  • Size: 1.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for rapidfuzz-3.9.2.tar.gz
Algorithm Hash digest
SHA256 c899d78709f8d4bd0059784fa27a9f6c53d04fc4aeaa21de7c0c8e34a7154e88
MD5 49f164f4898a9adef95c307114227487
BLAKE2b-256 fc0415568cbe04bf72ab38faf5cc76683363d635a94b1cc1351bb017a709576c

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 c01c515a928f295f49d588b6523f44b474f047f9f2de0079bc57bcd00b870778
MD5 bcc6091149c3191417090a849e37139f
BLAKE2b-256 81b983e3bc083185d897f9b8ab4fc82723b0c516b4627f26e5df633d9a442734

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 77ca96eec40e815f0cf10b00008f295fd26ca43792a844cf62588a8ea614e160
MD5 db08b8f35fabd43a83483fb69bca47b1
BLAKE2b-256 d64a4281504fa95338f154cc2c20bf88ba55da941768ea38c0f63b0d06b864c2

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 04a1c38a72a50f3e6d346a33d53fa51ba390552b3592fca64a07e54d749b439b
MD5 002ab362efb2b54af2f3bdb9414ea658
BLAKE2b-256 1703b1f985b1818aeb76f97e67bc7621eb7327c1fa3b795a6eab5934bc2143d8

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 32dd79b0f90ce609df96d0d48ef4327cf1f0415b9274588a466d3610a775d2f9
MD5 0e625f064a5ddbd5ad5fecba715729d0
BLAKE2b-256 890a3c2ee8b94201ca2637257666e6d7c566b4f1ebe5e9bb4acd26a9fe215b47

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-pp310-pypy310_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-pp310-pypy310_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 eaa8178ec9238f32f15b6e49f70b852accda0a848448c4e30bce77c6624ebaba
MD5 44e7e868fed778739fdad7d91dc0655d
BLAKE2b-256 b9b2359f9855da8e4c3897a115d51de04d2a9ddd1e10170f72ae30fa1dc9e3ad

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-pp310-pypy310_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-pp310-pypy310_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 018360654881e75131b227aa96cdaba543c438da881c70a12ca0c86e2c4083b2
MD5 a89cbd3443c997df2672833f1f6ffaa5
BLAKE2b-256 857c32210aae0e56f5f900db959aedf123b24bad04d6469f028b5b1bd2c07af8

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 16b41fe360387283a3184ce72d4d26d1928e7ce809268a88e8491a776dd770af
MD5 4c08207ff6d1fdb740880a20191509b4
BLAKE2b-256 fd9d467ea1d196dae25645ba03bcdf6258fb37f12a91fdc5ba5adfd0716fceb0

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dd38abfda97e42b30093f207108dcba944beab1edf6624ba757cf57354063177
MD5 3dd81eaeea140a3273d958b5d8d182ae
BLAKE2b-256 059cdd74f5bc03f17668cc8929902b56b9fe4a9c53cd136be7a66476eaf1991b

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 5fbe4d3034a8cfe59a2b477375ad7d739b3e5935f10af08abdf64aae55780cad
MD5 2b8814b997d24f2b18c30e7c78e99c37
BLAKE2b-256 7da90710a521ac30375bc3385a0fddae5817c3263971b8ba3a473cddfb49bd55

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 663e52cf878e0ccbbad0744eb3e2bb83a784645b146f15611bac225bc218f19b
MD5 05fc64b7c859c1ffb5ee4b25bcc1521e
BLAKE2b-256 b7a6ddc974bda64e51263532f917224edee237df98aa74cbfe24ee7ff82a7cb1

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 45f80856db3e22cb5f96ad1572aa1d004714514625ed4668144661d8a7c7e61f
MD5 93fd81217f0a1923b36abb2cb0fd8f36
BLAKE2b-256 67b63c622fb3c03062c59177a315b085aebb3592e93bcda1b13c16f0fa34a16b

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a373748fddb5403b562b6d682082de360bb08395f44e3cb7e74819461e39a16c
MD5 493b5f602e89301c1801ef54ddf5b7b9
BLAKE2b-256 d397178a1a0fb9cb5d00fee5f76a6f389ebcc6857a9553d90037fd500b9ea711

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 1fd8458fdac232766d55593c1228c70968f382fdc376c25685273f99b5d1d921
MD5 405f5c373d2f8382fe6b03671828a911
BLAKE2b-256 dbdab863d3891fbde2488697b7bd279841c4df5691cf3c29b53c23a7d3697aae

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b9ec1fd328518c33adb9171afe8735137cb7b492e4a81cddc23568f9980c235c
MD5 13a16880c1fdfd349a0fdf58c670ebd3
BLAKE2b-256 990f5e38bf927621a12c9bd39668cea0c590d05efc97a5687750475f3ec4e75c

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a70045e84225697ddf67d656aa25b70d6802e2ff339d51f9545fca5b9b13fb8c
MD5 01055a4392a77000cc261f007eecb780
BLAKE2b-256 8f2664907aa938c935cb891e6a56ef65004ce26b189a0abf633d41a234a986b7

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d3c9e33ec21755bda1878095537cb84848e9cf6510d4837d22144ba04e33df29
MD5 9d3801360a5b84c54197d6e973590057
BLAKE2b-256 4c1d3a275ac9d1a903cdc4ad97e156bd9ac9e2e2e00675724ee086b900384c42

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-pp38-pypy38_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-pp38-pypy38_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 64f3480bddc12b89969930f12a50a1aeb53e09aad41cf8b27694d83ca1cc7864
MD5 f105d55f9b6512b2dcbfb9546f36fb05
BLAKE2b-256 42e88253efbba9f5b0dfaf801f793ecf21bae30cd2059541b77b26273c9161e6

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 07e14ef260b6f4ee03dff07a0ac95a16aff1ddbc7e6171e07e49d2d61526f3be
MD5 cd4a8a126fb8ccb673c4b046430eeccf
BLAKE2b-256 e51b74aeec3852323724b57febbcd3981bcbf321d5710354874157e57ec91af9

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp312-cp312-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 168299c9a2b4f20f10c1bb96d8da0bb05bf1f3b9957be3a0bae5db65ce9f095f
MD5 e1d1b499b9360c6c40a9f32d2e8d7cba
BLAKE2b-256 7f15daecb9134a0ba4f6e118de6989896833b5891e1db68c71ae96ac15a4513d

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 09f354fa28e0fd170c6e4eea5e97eea0dba43761067df93109f49a5414ca8584
MD5 044c0641aa11e558374cf9814f30884b
BLAKE2b-256 720eb44badd0df23a54bd0f910eea3c068df0de62f4613fc9b87c7ba975734dc

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp312-cp312-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.9.2-cp312-cp312-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for rapidfuzz-3.9.2-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 77bdb96e82d8831f0dd6db83e2ff0d4a731cff53e926d029c65a1dc3ae0f160a
MD5 b68a899afbe87c0aa635bb209c9c933d
BLAKE2b-256 4045c027c3ea06f6339278b5944a2c5ed21f0a4161e3a220130f61cc573331e1

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 8603050e547249c1cc8a8dc6a49917076572ea69b04bc51eb1748c403cfc9f46
MD5 a407f3082cf0a197ef323aa1d292dc20
BLAKE2b-256 c278603a5d5cb114a52d722000ead6fd3b35af652de214b3a4462792f8736fa4

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp312-cp312-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp312-cp312-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 c409852a89535ec8720301a847bab198c1c14d0f34ed07dfabbb90b1dbfc506d
MD5 b417923c651d35bc2ea19c4a87ab859f
BLAKE2b-256 7f7422dacd0d4f731146041628f59164edf8ead984bddd8dd5af42796e2c1373

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp312-cp312-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp312-cp312-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 fb3fc387783f70387a91aababd8a5faeb230931b655ad99bcf838cd72404ba66
MD5 ac497a68a89244387e2eb6e4209dd086
BLAKE2b-256 fc28c98d6ae67d6d3c7f5a6918fd4b1135d8941ba945246a28b05f293b234923

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 5c30407cadbfe99753b7a996f0dd6da490b1e27d318c01db227e8f49770a01ec
MD5 2817ab4179d937a9fba9f7e66ce4c29b
BLAKE2b-256 a066265bfb010df7f24057c0457a6166ace2365a4ec850d55c5cb340564aadac

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 ce253a2b7a71a01a4abac71ac31fd05f6ac1f1cd2af2d98fa80fe5c402175e54
MD5 10572eb5811637b2d3262e59a2d68533
BLAKE2b-256 c0ec14b7c895f6d902291e41b1d9ed051868aca91ba506702bd5321474c064a7

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4cdc106b5a99edd46443449c767287dbb5d4464a7536475a365e368e7ee4d651
MD5 b7d24961e167df41954b4e983c6ee7c3
BLAKE2b-256 f75fff087987704ad0ee6d3cef9db31eabf595418f096dd11ea0f43b1e36818a

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 aeefff80f3f5d6841c30ffe0cdc84d62874de5a64cff509ae26fbd7478297af8
MD5 a45b2f6b8b58197eae1917787626125a
BLAKE2b-256 084334fa6170e9710ea529b261d5aa75704227397b3dbdbf98afadf0531897ab

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 b04c851d309df8261ed42951444db657936234ceddf4032f4409b0214c95ecbe
MD5 5959de74b1888d95c6dfbdf14e9bc45e
BLAKE2b-256 46d169e1ebf2f4b95a7dbda03b71303a94d917a7450e83480790341ef5e0d4bf

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 5107b5ec8821453f7cac70b2d0bc4866699b25bff4819ada8b28bf2b11e87f65
MD5 023954110e1850f6230bdfd5f781f46d
BLAKE2b-256 afe873c9b825949cec3cfa77086ee7bc0116aa6e36c664406a9c75f737dc2470

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4625273447bdd94f2ab06b2951cd8b74356c3a48552208279a3ec2947ceee141
MD5 a7b665a2bbb44634c4b3996b3fe71c15
BLAKE2b-256 5de1bcfef235886fe0523ba7755c51af926a6f88b23aacdd1de886f9d2920b5e

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7270556ddebaa98fb777f493f17ed6a733b3527de16c43342bce1db109042845
MD5 c1972c0ee67ea8665f71b21a45c94fc3
BLAKE2b-256 1263eb106ad13edce9364d515330db362a50ce026095776793e51fc630e4a5f8

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ae6c4ba2778b097397968130f2b0cb795cdc415c115539a49ce798f606152ad5
MD5 cf385870643caec8722b9748c1ae4d4b
BLAKE2b-256 ecdc77d31b46511baa9be3098b3504ef8f6cefb9cccdbf778a3663b64e591644

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp311-cp311-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 ed02d73e46b7a4604d2bc1e0364b25f204862d40dd162f6b36ee22b9bf6d9df2
MD5 9a6f8f7be429fd559d936af7c5906f7d
BLAKE2b-256 4b571c0c35edf1b6672a53b194c71c80766083910285b0d8b6730a4ed2a65bd6

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 91e1a8872c0b8aef95c33db86d25e8bdea6f557b9cdf683123c25035b2bcfb8e
MD5 32e5bc5161158fec27d24ba0470fb710
BLAKE2b-256 d36e3233a9b4ebc782015579665859ff33d189d51d5b42fac6f39f3a0cdf5377

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp311-cp311-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.9.2-cp311-cp311-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for rapidfuzz-3.9.2-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 34c8bca3fef33d7e71f290de68be2184fac7a9e136fa0ed22b17ec597e181406
MD5 a5c3fe9db21280ea37b54f1d486d3018
BLAKE2b-256 c1caef26c900fa74e545686e2d003272b4eaec30eeda9e0ce870d70af489316d

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 5dd9ba4df0db46b9f909289e4687cc7721c622985c4cd169969005dd30fc1e24
MD5 cbd92c4b83fd10c934eb2f468da2445c
BLAKE2b-256 b75486607f0984df653efc00d67b733e15cda97c370a95cd95e5a38d16822eef

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp311-cp311-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp311-cp311-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 d65f34e71102d9cbe733d4ba1c645e7623eef850562501bab1ac79d217831436
MD5 59109cf78c7e66b08903b26b0fdca999
BLAKE2b-256 320586581ca36714ce7f33501400b7e8afa08a607f8982bcc6fa09fce4bab676

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp311-cp311-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp311-cp311-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 6ce5e57e0c6acf5a98ffbdfaf8bccb6e41fbddb9eda3e041f4cc69b7cade5fa0
MD5 cef85dde99ca7017709435378265f10c
BLAKE2b-256 5d9e6df89e00a60c5bb990bd43714306c17211ac5a7eddf6500abf42f3f38712

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 1f832b430f976727bdbba009ee64acda25412602976fbfb2113d41e765d81849
MD5 d155d0cdccb2e8cd539b19246544a4f8
BLAKE2b-256 5ad290c76badc39a695ffd8fddfc123e555d38777899a919c261415733eab363

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 d8e4041cfd87f0a022aa8a9a187d3b0824e35be2bd9b3bceada11578ddd9ad65
MD5 35ecce3d627558d8b50235f115ae6974
BLAKE2b-256 ef123f33210e28b9428f0b0444e22a2462113a32e2f78ca66eb09550e05aa700

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 923ae0301a56356364f1159e3005fbeb2191e7a0e8705d5cc1b481d9eea27b97
MD5 a20db1cb4aa00c0ade831d951026306c
BLAKE2b-256 e5b0c4ef113f88d3c667f5672e37ba152b4ae1b91c7b90455b7a0ff51eba6d31

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 0fa1b3eb21756003a6a3977847dd4e0e9a26e2e02731d9daa5e92a9258e7f0db
MD5 a65a5c10837fa78d4f005d6e15598a79
BLAKE2b-256 a2854347e005e9ba08c40fbbab0ea25d9bb59f966dfea32f3b4bba7422765482

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 e33b61ef87e1876d216c479fa2256233b3bb0424465ab2db1d94ab7b8649ae1c
MD5 80c86ddc35aaa32aa32573cc23ef49b6
BLAKE2b-256 7ffea535be1f9edab24a0aecb794ec9013cbc90a4447f7e223bcd13afa8d03c0

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 cf8582d85e35641734d6c1f43eb37c1f2a5eda338d3cfa8e651e078246b9ec58
MD5 98396c10aee980176a96b63f4030ad92
BLAKE2b-256 51db8cc77729cda6964be9be27c34caae3e3361fb4e07e71fa3427d0c9664012

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9b262883c3ce93dee1a9a974992961c8098e96b8142e2e01cabdb15ea8105c4a
MD5 41402d1049c09c2b4eb01f1220f49147
BLAKE2b-256 9fe2b79f983390c3467a8de38690dccc9a662fc3e3dc03616a3f53a0bdded28f

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f4828642acdb075154ce2ff3260f8afb6a17b5b0c8a437efbadac06e9995dd7b
MD5 3734c418b889a49af3a9071d833dafd1
BLAKE2b-256 4654db4680cae818b2f2efb01f01020a4d0ba18478517643060265dbd4cc8ea2

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 300ab53981a5d6831fe7e0f30c407c79520ad0f0ab51b2cece8717689026f495
MD5 a6e6c8dd11dc7b5bc706e348c9c26e4d
BLAKE2b-256 f9cda3c376be3a37f77284f82a47c0bdf2aadf56f2a3c9a7cebec29ad588425e

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp310-cp310-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 ca4af5d7fc9c17bdc498aa1cab9ecf5140c8535c9cedeba1990bbe4b8be75098
MD5 de249745735bff03fc9bd276d11173cc
BLAKE2b-256 b08ee8adaa59131ff1e00897eac582d1564bea3dd9a65e959d6eef0fa0540cb2

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 01a9975984953fe549649e6a4c3f0d9c60707acf458184ec09678d6a57560112
MD5 de7825d4a7c0ce5f26d29d591ff83216
BLAKE2b-256 8a68bda352581ec366ac915d6694238fbd6478e235f881ab817bb7925ecc9f7b

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.9.2-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for rapidfuzz-3.9.2-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 5b331a09446bc8f8971cf488c9e6c0f7dbf2739828588e063cf08fd400638a24
MD5 6ca98ed06355c90139a3b7386bd83108
BLAKE2b-256 f6768b87fc4dbbc19e44d287b00be9858a64249b66eb5abcc86781dc90741561

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 204fd4d293ef4d409c4142ddf830b7613924b998670f67e512ab1f880a60218a
MD5 d93a6ae027d6128ee5f6991278de396c
BLAKE2b-256 bc5aae17e06ba98adca3356f35aa2628d612d1062677e6facf86f0f38b09203e

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp310-cp310-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp310-cp310-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 6609e881b57cabb40d515cc226bbf570e32e768bd2cc688ba026a45ffbc60875
MD5 069fbc371b255239e8062bb5a66964bb
BLAKE2b-256 14102b9730af6f6b20bf69050c4fba53f2dea11c541d674399033960b0e63f6e

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp310-cp310-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp310-cp310-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 96fa229d06ee005d2f46374fb2af65590a590a6fa2fd56e66474829f5fa9adfe
MD5 ca4ede2c997aa3a6fe808cf5719d4e36
BLAKE2b-256 5f361c3671ee97b4d760fde4a4552108c905da6201811b26f5e34278ce0bdcc7

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 0ed70fc6627ae37319f822e5d8d21d561044e0b3331b6f0e6904476faa8d8ed7
MD5 a0fde1d836964c9396fe396799b32ed1
BLAKE2b-256 9a85d262d4f79fe1f7535704191998c428891bb2ae46a45c5412b7cb5812e90b

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 5c61d53f293b4e3286919b0e081513367afabcb5aef0b6f899d006117778e558
MD5 ed02c11eda0156992634353d9e9591b2
BLAKE2b-256 00acf5834b7da65f1da7e5ead7c4c573e2ecb83f5519767bada324a825f15b64

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 81f218524596d261a6cb33cda965687e62dd30def478d39f0befa243642c3985
MD5 32e279477404f19c6537cf8e8fa0a2b7
BLAKE2b-256 261e612836af38729b603c29a0197bf1a5b10cc0455793b57dc1e80baa3eb5f8

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 801a5d97c465a3467b3cdf50cdcdadec129ddca582b24430f5d24c715c80be9b
MD5 4eb552cb67a8afc5744297d373b399eb
BLAKE2b-256 0b6d5ec80c58f914918235bad3690c8c54c3ba3a7f83e5c767828e4450264a50

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 df19455c2fb85e86a721111b84ac8dd3685194f0edc9faefb226731ad3e134a7
MD5 f335c5624359748ef0b659ac6d9452c0
BLAKE2b-256 966e34ccb1f154bb5aa746ac3a1014b5f9fd980185a5039955f8e82d250f7e3b

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8fbc0f6e1b6f4063b937d0edcf0a56cbc1d7179ade9b7d6c849c94e44a7b20f6
MD5 22782f1028acc6f10d1f0196ead83c4d
BLAKE2b-256 a871d716a32d47977168086f6f3163165c5f923dfb7386c67f632d4919d65f6d

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fe128ac0e05ca3a71d8ff18e70884a64fde00b6fbd2b4d9f59f7a4d798257c55
MD5 64c4ed21d7ba8cfa94611cbc902aba7a
BLAKE2b-256 ba3f66f1d1ed5c09b5e840e3e5ed11bfd83662193ffe03259ad77d0804b93abc

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 280ef2f3066df9c486ffd3874d2489978fb8021044c47c006eb96be8d47917d7
MD5 1e964a3c6d5b4055342de160298d6af4
BLAKE2b-256 ca9ac9c46122f0c291e960095978e9555c9cfccd0a61d34a7a8a52ee674f2e4d

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 45e0c3e279e70589381f47ad410de7211bac943e827eb09eb8339d2124abca90
MD5 a4470322e11f5ac114aaa4055fa0e745
BLAKE2b-256 4ac312d909041f2f1875b335df3e2a92b3cda41369ac0b54d2361ed949da8b9d

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: rapidfuzz-3.9.2-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 863.9 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for rapidfuzz-3.9.2-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 0ec69ad076cfc7c88323d671613e40bb8754ba95a203556d9a7759e60f0544e8
MD5 9048de7326ab9880294b9b7b99d1a943
BLAKE2b-256 7fba862308dcc643abbd57be957294d906ab6a18b40fc5575f0873d26815bda6

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-3.9.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for rapidfuzz-3.9.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 bdead23114206dea4a22ed3aad6565b99a9e4b3fff9837c423afc556d2814b1a
MD5 0ba562212d8413849edcd71858304ba4
BLAKE2b-256 4c3bf3e01d4a091749de31f105dda4a6987694e801714abed71abaecbee97388

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.9.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for rapidfuzz-3.9.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 2db70f64974c10b76ae37d5cff6124dce791def815d4fdf5ac16fe60be88d905
MD5 e14b5b98b6b26e70bd6a0b4bf060510f
BLAKE2b-256 e080fc67eaf259025e367ca5b01a3d37616b1105953a0afc2db2bfe3fba8e958

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 83ed8bc2c942dc61ab739bbca1ead791143b4639dc92156d3060bd0b6f4541ea
MD5 2f0760fa072dc01f6c27c6432a3ba699
BLAKE2b-256 f57c74094ca3a9e3d07c670d49b02ffe1ce3bea3f77e196d80199013038844cf

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp39-cp39-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp39-cp39-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 77226a77590f83ee073f4f8cc86a1232da88e24d19d349361faa169fb17ba1cd
MD5 e8b1e69a6a3083dc875890f470b90ff2
BLAKE2b-256 fc530a85904b14dd13c5bdbe089a32dc5d4bb4c67dabfcf9cb4c229bf5d22e64

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp39-cp39-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp39-cp39-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 c3bea20db89b510d78d017b349b9d87159c32418693ddf091d9035dbe20b4dc0
MD5 9b143cbcdcbfcd69dc1a117a5dbcc7f7
BLAKE2b-256 9db4d819e86e650ea19a0fb820754b046ab740b631125c39c0d966dd19497d4c

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp39-cp39-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp39-cp39-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 c05b033fc3ff043f48e744f67038af7fd34003047c7810f24bec7c01ce7da05b
MD5 5202a46dd1d85f3524410b8d16318ffa
BLAKE2b-256 ccaf74fe13bceb7bb74ae206ce3871f1353324f49500e5c6d5f81d48a5cfd7fc

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 5fd1b49fba8b4b9172eed5b131c1e9864d4d76bebea34359274f16a3591e5f44
MD5 4c325732774d8def2aad8089125dd6ae
BLAKE2b-256 e26ced8afe4a2f22bdbeb0dc0754ea60ad5d12576572d2ba8be7bc3fad7cd53f

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ec5f7b1bac77439b624f5acbd8bfe61e7b833678701068b43f7a489c151427c0
MD5 4dc82bb913d8617653676863afbf150c
BLAKE2b-256 9ff363707d33f1f90aa8028f0b4e39cda3c06f9ef79dc1720f91f17aa65810a4

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 e1b32b03398517b5e33c7f36d625a00fcb1c955b9fe3c939325688175fb21730
MD5 d4d0cd63763a5c391da9103df903053c
BLAKE2b-256 d8691f339134df29179c41280b5c79ff90bed566ad2824fe3f4a1379af7fd598

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 c64a252c96f29667c206726903bb9705c5195f01850360c9b9268de92ac878dc
MD5 e41a49cc8237ff2a09937d911923cf94
BLAKE2b-256 792fda981b7c5b2849791eb4429c9f20bb065e1d2e05ede8a227f0ca3a08ff7f

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ef2964f4eb9a37487c96e5e32167a3c4fa51bf8e899853d0ac67e0465a27702c
MD5 76bc7ba08d0b867320c0ff8e31b2b136
BLAKE2b-256 57f999138899a00fcd869df71cbb0b718feb5539493b286f15e0186681e11979

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 65eb9aeae73ac60e53a9d6c509daaa217ea256a5e184eb8920c9b15295c48677
MD5 74981fa4a1d726479d2e20ff72b8ee5e
BLAKE2b-256 4edb16767cd53858c47088146db7d06c993050a440ef8a9548ca97b781a5348a

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 723518c9a18e8bda996d77aa9307b6f8b0e77905702b2772b020adf24191073a
MD5 0c9ddcbe1fbdf87a723141f91a49330d
BLAKE2b-256 c43f88acb068aa7fb2be28f8ce909d20890154a80508f20fedd9ea0b005726fa

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1ca9a135060ee4d887d6af86493c3e0eb1c99ca205bca943fe5994dc93e648d5
MD5 294ec385d827feb6976b9eae483f7351
BLAKE2b-256 53128ff6aa03d18514a6631f55fa3a64c451bc30e94df7c0bd68f9b5647bb04e

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-3.9.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for rapidfuzz-3.9.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 cf1952b486589ffcfbde2015ca9be15e0f4b0e63d1e2c25f3daec0263fda4e69
MD5 cb0dd7d1dcb2602db2cdf1c782d8e9d5
BLAKE2b-256 6f68ffac7d4eca551ab5c152e18aafe5eb1530d40fa3a0aff91d4e4578ba65a3

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.9.2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for rapidfuzz-3.9.2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 876c6628fec6241262c27f8fda3c73bab88e205e9b9394c8868361e2eda59048
MD5 e955f85753c633236dc308fb2db93fbe
BLAKE2b-256 5cb2f30990b5a5e361a2e300327d7ea9cf4c4a76915e53b5815b7d4627da77d5

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 27214f93555d4f9b7b1baf107a6ba13e9daee21f1ec6e36418556d04a7ee4d9b
MD5 5b2192dae3e0820fc3b807ef1dbe101a
BLAKE2b-256 10cdccfe756ac76dc0edad7869bbed60e9c2cf6f96b749eda9542b11ec9d4880

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp38-cp38-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp38-cp38-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 2943b0f17195c000948a7668bb11979ea0e50079a3d3db9d139e51b68c3a7c26
MD5 9be4609ed392bbc59588affe391cce92
BLAKE2b-256 87f9e53d963688a9f48153ad738310a05ed6032a42dbb0a62b760cd8345d0a30

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp38-cp38-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp38-cp38-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 8a56c494246d29aacf5ac93ca3cf338d79588a1a5c05d8f496c3f4d7127e9031
MD5 526b34ca789925d20eb902fd3107b6db
BLAKE2b-256 3860aa45ec935b73354723c510357f4f723504337b0348e0386c85365a27b1c8

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp38-cp38-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp38-cp38-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 574f464da18d660712e9776072572d462cf6a26144c833d18d9c93778286e023
MD5 2f995d2529979284ce5b591316516731
BLAKE2b-256 895e93fdbf1059a640e267dc605d3e03790197939d5086b85138b2af496edcef

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp38-cp38-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp38-cp38-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 1bbfaf439e48efe3a48cada946cf7678b09c818ce9668e09dac40d05b772f6f8
MD5 9a24da7217464b200ffe8f951853e942
BLAKE2b-256 5ce1aa6bcca08614de66eb75ad2ffcbd2e57bcbc98eba66088b635dff5229fc9

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e941f81a60351a842976fea208e6a6701a5899eb8a80b907e57d7c3099337900
MD5 295a8acad9c2de6f81007ee1a038f10f
BLAKE2b-256 cf3dd9b54033c4576efe4bdbe8faec67963779be68678a813520b65a493547db

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 bea61851a4c2f93148aa2779458fb3f70a62342d77c9ec3d9d08445c8485b738
MD5 aae9aa7341802ae36a63df84338338cf
BLAKE2b-256 6869ed9365e96f403b375ba3f2c20d2f6ae890f0b4d7510a1e2bdc4888b1b45c

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 54534743820a15bd0dc30a0a0010825be337973236550fd63587700a7950bbca
MD5 0e059ccc67a73bf50a50a4e8c49ba0ca
BLAKE2b-256 26ebe9c29c70b125384862926df2a3cc0fd215aa75b92af7c9d0591c15972fb6

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f13a6bbadba8fdd42676c1213ebc692bba9fac00f7db0ae92acc06bb734294c4
MD5 dc7c22a8af8c191558bc0df0e289ded1
BLAKE2b-256 e70b907b9bd50dff10eeb2ec4673ea38264c274ae159fa7f1fd84d26eea44111

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b7161b205f25eff5f88ab809fb05a2a102634e06f452c0deb9535c9f41cd7b0a
MD5 942a5658d794f52047105e805dc493ea
BLAKE2b-256 f68c4c57bfa46895cf3387dc5c37f821747972aedf3f7bcba4075bd3ae7679ea

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c447d0e534418ef3eaabcd890d85c7e9f289c1c6ef6e060a0b1f239799781747
MD5 e11809e319af6e5a743a3bd0a0747dba
BLAKE2b-256 d1b269d145a5ff951420241ab473f616fecc6691861fb0b22a9b55d43057bbd4

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d87621d60078f87cb52082b1cbf9849afeaa1cb6d0a2b072fce25fe21c8675b4
MD5 7a6b0dddcf5a3291b10009096f49fb53
BLAKE2b-256 cb2c7ca5e586a473a1ccc7cf3795f813346f923364b7bd7452203bf9ccc44f97

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page