Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continuous Integration PyPI package version Conda Version Python versions
Documentation Code Coverage GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation
  5. It can be largely used as a drop in replacement for fuzzywuzzy. However there are a couple API differences described here

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++17 capable compiler.

git clone --recursive https://github.com/rapidfuzz/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.
Note that from RapidFuzz 3.0.0, strings are not preprocessed(removing all non alphanumeric characters, trimming whitespaces, converting all characters to lower case) by default. Which means that when comparing two strings that have the same characters but different cases("this is a word", "THIS IS A WORD") their similarity score value might be different, so when comparing such strings you might see a difference in score value compared to previous versions. Some examples of string matching with preprocessing can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and distance.

Simple Ratio

> from rapidfuzz import fuzz
> fuzz.ratio("this is a test", "this is a test!")
96.55172413793103

Partial Ratio

> from rapidfuzz import fuzz
> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> from rapidfuzz import fuzz
> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.9090909090909
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> from rapidfuzz import fuzz
> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
84.21052631578947
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0
# Returns 100.0 if one string is a subset of the other, regardless of extra content in the longer string
> fuzz.token_set_ratio("fuzzy was a bear but not a dog", "fuzzy was a bear")
100.0
# Score is reduced only when there is explicit disagreement in the two strings
> fuzz.token_set_ratio("fuzzy was a bear but not a dog", "fuzzy was a bear but not a cat")
92.3076923076923

Weighted Ratio

> from rapidfuzz import fuzz
> fuzz.WRatio("this is a test", "this is a new test!!!")
85.5

> from rapidfuzz import fuzz, utils
> # Removing non alpha numeric characters("!") from the string
> fuzz.WRatio("this is a test", "this is a new test!!!", processor=utils.default_process) # here "this is a new test!!!" is converted to "this is a new test"
95.0
> fuzz.WRatio("this is a test", "this is a new test")
95.0

> # Converting string to lower case
> fuzz.WRatio("this is a word", "THIS IS A WORD")
21.42857142857143
> fuzz.WRatio("this is a word", "THIS IS A WORD", processor=utils.default_process) # here "THIS IS A WORD" is converted to "this is a word"
100.0

Quick Ratio

> from rapidfuzz import fuzz
> fuzz.QRatio("this is a test", "this is a new test!!!")
80.0

> from rapidfuzz import fuzz, utils
> # Removing non alpha numeric characters("!") from the string
> fuzz.QRatio("this is a test", "this is a new test!!!", processor=utils.default_process)
87.5
> fuzz.QRatio("this is a test", "this is a new test")
87.5

> # Converting string to lower case
> fuzz.QRatio("this is a word", "THIS IS A WORD")
21.42857142857143
> fuzz.QRatio("this is a word", "THIS IS A WORD", processor=utils.default_process)
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 76.92307692307692, 1), ('New York Giants', 64.28571428571428, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
('Dallas Cowboys', 83.07692307692308, 3)

> # With preprocessing
> from rapidfuzz import process, fuzz, utils
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2, processor=utils.default_process)
[('New York Jets', 100.0, 1), ('New York Giants', 78.57142857142857, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio, processor=utils.default_process)
('Dallas Cowboys', 90.0, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparison between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparison I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
    "".join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
    for _ in range(10_000)
]
samples = words[:: len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
    for word in words:
        scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with cdist in the following way:

cdist(samples, words, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like cdist is a lot faster than directly using it. That's why they should be used whenever possible.

Benchmark cdist

Support the project

If you are using RapidFuzz for your work and feel like giving a bit of your own benefit back to support the project, consider sending us money through GitHub Sponsors or PayPal that we can use to buy us free time for the maintenance of this great library, to fix bugs in the software, review and integrate code contributions, to improve its features and documentation, or to just take a deep breath and have a cup of tea every once in a while. Thank you for your support.

Support the project through GitHub Sponsors or via PayPal:

.

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. That's why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-3.9.3.tar.gz (1.6 MB view details)

Uploaded Source

Built Distributions

rapidfuzz-3.9.3-pp310-pypy310_pp73-win_amd64.whl (1.6 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-3.9.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-3.9.3-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (5.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-3.9.3-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-3.9.3-pp310-pypy310_pp73-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded PyPy macOS 11.0+ ARM64

rapidfuzz-3.9.3-pp310-pypy310_pp73-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-3.9.3-pp39-pypy39_pp73-win_amd64.whl (1.6 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-3.9.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-3.9.3-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (5.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-3.9.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-3.9.3-pp39-pypy39_pp73-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded PyPy macOS 11.0+ ARM64

rapidfuzz-3.9.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-3.9.3-pp38-pypy38_pp73-win_amd64.whl (1.6 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-3.9.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-3.9.3-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (5.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-3.9.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-3.9.3-pp38-pypy38_pp73-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded PyPy macOS 11.0+ ARM64

rapidfuzz-3.9.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-3.9.3-cp312-cp312-win_arm64.whl (856.3 kB view details)

Uploaded CPython 3.12 Windows ARM64

rapidfuzz-3.9.3-cp312-cp312-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

rapidfuzz-3.9.3-cp312-cp312-win32.whl (1.8 MB view details)

Uploaded CPython 3.12 Windows x86

rapidfuzz-3.9.3-cp312-cp312-musllinux_1_2_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

rapidfuzz-3.9.3-cp312-cp312-musllinux_1_2_s390x.whl (3.3 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ s390x

rapidfuzz-3.9.3-cp312-cp312-musllinux_1_2_ppc64le.whl (2.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ppc64le

rapidfuzz-3.9.3-cp312-cp312-musllinux_1_2_i686.whl (7.2 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ i686

rapidfuzz-3.9.3-cp312-cp312-musllinux_1_2_aarch64.whl (2.4 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

rapidfuzz-3.9.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.9.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ s390x

rapidfuzz-3.9.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.9.3-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (5.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

rapidfuzz-3.9.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.9.3-cp312-cp312-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

rapidfuzz-3.9.3-cp312-cp312-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

rapidfuzz-3.9.3-cp311-cp311-win_arm64.whl (861.9 kB view details)

Uploaded CPython 3.11 Windows ARM64

rapidfuzz-3.9.3-cp311-cp311-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.11 Windows x86-64

rapidfuzz-3.9.3-cp311-cp311-win32.whl (1.8 MB view details)

Uploaded CPython 3.11 Windows x86

rapidfuzz-3.9.3-cp311-cp311-musllinux_1_2_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

rapidfuzz-3.9.3-cp311-cp311-musllinux_1_2_s390x.whl (3.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ s390x

rapidfuzz-3.9.3-cp311-cp311-musllinux_1_2_ppc64le.whl (2.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ppc64le

rapidfuzz-3.9.3-cp311-cp311-musllinux_1_2_i686.whl (7.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ i686

rapidfuzz-3.9.3-cp311-cp311-musllinux_1_2_aarch64.whl (2.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

rapidfuzz-3.9.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.9.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

rapidfuzz-3.9.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.9.3-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (5.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

rapidfuzz-3.9.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.9.3-cp311-cp311-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

rapidfuzz-3.9.3-cp311-cp311-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

rapidfuzz-3.9.3-cp310-cp310-win_arm64.whl (861.0 kB view details)

Uploaded CPython 3.10 Windows ARM64

rapidfuzz-3.9.3-cp310-cp310-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-3.9.3-cp310-cp310-win32.whl (1.8 MB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-3.9.3-cp310-cp310-musllinux_1_2_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

rapidfuzz-3.9.3-cp310-cp310-musllinux_1_2_s390x.whl (3.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ s390x

rapidfuzz-3.9.3-cp310-cp310-musllinux_1_2_ppc64le.whl (2.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ppc64le

rapidfuzz-3.9.3-cp310-cp310-musllinux_1_2_i686.whl (7.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ i686

rapidfuzz-3.9.3-cp310-cp310-musllinux_1_2_aarch64.whl (2.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

rapidfuzz-3.9.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.9.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

rapidfuzz-3.9.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.9.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (6.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

rapidfuzz-3.9.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.9.3-cp310-cp310-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-3.9.3-cp310-cp310-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-3.9.3-cp39-cp39-win_arm64.whl (862.8 kB view details)

Uploaded CPython 3.9 Windows ARM64

rapidfuzz-3.9.3-cp39-cp39-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-3.9.3-cp39-cp39-win32.whl (1.8 MB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-3.9.3-cp39-cp39-musllinux_1_2_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

rapidfuzz-3.9.3-cp39-cp39-musllinux_1_2_s390x.whl (3.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ s390x

rapidfuzz-3.9.3-cp39-cp39-musllinux_1_2_ppc64le.whl (2.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ppc64le

rapidfuzz-3.9.3-cp39-cp39-musllinux_1_2_i686.whl (7.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ i686

rapidfuzz-3.9.3-cp39-cp39-musllinux_1_2_aarch64.whl (2.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARM64

rapidfuzz-3.9.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.9.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

rapidfuzz-3.9.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.9.3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (5.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

rapidfuzz-3.9.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.9.3-cp39-cp39-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-3.9.3-cp39-cp39-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-3.9.3-cp38-cp38-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-3.9.3-cp38-cp38-win32.whl (1.8 MB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-3.9.3-cp38-cp38-musllinux_1_2_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

rapidfuzz-3.9.3-cp38-cp38-musllinux_1_2_s390x.whl (3.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ s390x

rapidfuzz-3.9.3-cp38-cp38-musllinux_1_2_ppc64le.whl (2.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ppc64le

rapidfuzz-3.9.3-cp38-cp38-musllinux_1_2_i686.whl (7.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ i686

rapidfuzz-3.9.3-cp38-cp38-musllinux_1_2_aarch64.whl (2.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ARM64

rapidfuzz-3.9.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.9.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

rapidfuzz-3.9.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.9.3-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (5.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

rapidfuzz-3.9.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.9.3-cp38-cp38-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-3.9.3-cp38-cp38-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-3.9.3.tar.gz.

File metadata

  • Download URL: rapidfuzz-3.9.3.tar.gz
  • Upload date:
  • Size: 1.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for rapidfuzz-3.9.3.tar.gz
Algorithm Hash digest
SHA256 b398ea66e8ed50451bce5997c430197d5e4b06ac4aa74602717f792d8d8d06e2
MD5 701061fba1cc05081f299b86c854af80
BLAKE2b-256 50b922b4848fc842b17c4446433d5d472007c9799dbe8dd90bc0f6d60767c29d

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 a93250bd8fae996350c251e1752f2c03335bb8a0a5b0c7e910a593849121a435
MD5 82783b5bb6ff3082b987241d71b6bb73
BLAKE2b-256 5de1edca308f885507dd628bb01951d1daa21f64f1bf9a6db3a5fcedeebd4e92

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 41a81a9f311dc83d22661f9b1a1de983b201322df0c4554042ffffd0f2040c37
MD5 038c499f0714c94686a3f77d790f8e7e
BLAKE2b-256 af11dca6cb19b0da3253d1bab5c2547667daff99934e5312382ad5da115d341c

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 5e33f779391caedcba2ba3089fb6e8e557feab540e9149a5c3f7fea7a3a7df37
MD5 004bf246bd487e7c3a41d5c9b6084a29
BLAKE2b-256 356b1a9dfd55de5ab6d792d82089b19b63f6519efe8451d21386e816125df4c6

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 dc1037507810833646481f5729901a154523f98cbebb1157ba3a821012e16402
MD5 a0d57733210a3c057c9b208146385877
BLAKE2b-256 9e0449bbaf3c218d72b478bcfed597336659e93b72c8a7385712bbf7804fae57

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-pp310-pypy310_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-pp310-pypy310_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 282d55700a1a3d3a7980746eb2fcd48c9bbc1572ebe0840d0340d548a54d01fe
MD5 b1e5cfa507cd66d3a58c5eae91068073
BLAKE2b-256 ba6535818713f4fe82946e2d03f96215d76644a8da4332471f769bebd155f929

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-pp310-pypy310_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-pp310-pypy310_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5410dc848c947a603792f4f51b904a3331cf1dc60621586bfbe7a6de72da1091
MD5 94ed5f8c9f7e04345eb4ef5a19d2c633
BLAKE2b-256 2f3f7a5bf238c3fe509aa33426e6069a7f00d222ab01759aeb1232aecbe8d813

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 67201c02efc596923ad950519e0b75ceb78d524177ea557134d6567b9ac2c283
MD5 bf810771ac5a2c8ad6706783cdb2e1b0
BLAKE2b-256 8d0975234a8afc801759587d3688551e456343dc7d47796b91ff9864522f22c4

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3d8a57261ef7996d5ced7c8cba9189ada3fbeffd1815f70f635e4558d93766cb
MD5 4c9de769cea93ba9677219e7571cb4c2
BLAKE2b-256 32f229489fd7e793d2eec5946eb8b2fa83617fe3047034dbeee633a8c8d39228

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3bb6546e7b6bed1aefbe24f68a5fb9b891cc5aef61bca6c1a7b1054b7f0359bb
MD5 0510ed649e862833a8e6eb4294b8c04b
BLAKE2b-256 b0bc12861e1866f2129b0090b4f3901f02145b1b6892e9249664fc5457df83c4

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cde6b9d9ba5007077ee321ec722fa714ebc0cbd9a32ccf0f4dd3cc3f20952d71
MD5 d6c5f07011c7972e4d846bc49c68c3ec
BLAKE2b-256 fa332239caf2b96c2a637b9f88d962a2083139ee69d0fa30cae7f27c791d0a26

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-pp39-pypy39_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-pp39-pypy39_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d861bf326ee7dabc35c532a40384541578cd1ec1e1b7db9f9ecbba56eb76ca22
MD5 ce7e31ea338eaf1a7a7e281eb783797e
BLAKE2b-256 200ab136c89b5a5586c93fc72a2a54585b14a9f470c66cd068fedfbcdf430cc7

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2c1d3ef3878f871abe6826e386c3d61b5292ef5f7946fe646f4206b85836b5da
MD5 830f49fd886436e7abd6daea5b5f1952
BLAKE2b-256 79cbf29c412a8eec05944986c07e3ac941070b4316fb4fe018f5b910443ecd52

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 c8444e921bfc3757c475c4f4d7416a7aa69b2d992d5114fe55af21411187ab0d
MD5 1db5b6637b7cbccbfcde2f314823bddb
BLAKE2b-256 a0ae6b1149503a0abe810fc1aae4f59b5f65e2e37b60ae1549dc10b749f31c0f

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 930b4e6fdb4d914390141a2b99a6f77a52beacf1d06aa4e170cba3a98e24c1bc
MD5 3a0e287e238cbfb1eabdb05adefaac04
BLAKE2b-256 32f8d476a4c7c1cb654b91f482d00db15a43740f81965f36be0829fde653b4ed

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b770f85eab24034e6ef7df04b2bfd9a45048e24f8a808e903441aa5abde8ecdd
MD5 18804b06576d256159592a8a6af277d5
BLAKE2b-256 1b919b2bc6d7e89744c6ae4150c46ba48be84d7502a051982cbd799c5c5771d3

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8709918da8a88ad73c9d4dd0ecf24179a4f0ceba0bee21efc6ea21a8b5290349
MD5 b5b9138e7b70cc53b7f42324413bb39d
BLAKE2b-256 54df7e6ae5fabb677daf5f512f3a8f51e73b307a51d6f637aa169bb0e7e9156f

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-pp38-pypy38_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-pp38-pypy38_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ad04a3f5384b82933213bba2459f6424decc2823df40098920856bdee5fd6e88
MD5 ec92973457c89d6472f1c472e1b8bd15
BLAKE2b-256 aa138c082e7c72577e22ff857d57a4b4798ca292607d261031ebb3da49422a57

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3617d1aa7716c57d120b6adc8f7c989f2d65bc2b0cbd5f9288f1fc7bf469da11
MD5 9cf3a6b82c4e829d7b4e981603452faf
BLAKE2b-256 e9de549a534f5d5d54fb783b2391b539fbefc23bd7a8d89bc62964d179190810

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp312-cp312-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 e6e4b9380ed4758d0cb578b0d1970c3f32dd9e87119378729a5340cb3169f879
MD5 411762310c9daa41801a62271b9c6b54
BLAKE2b-256 5291cfdc19e395f830c1d4b13d55c673233380c1027baccf94e845ec28632fad

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 35b7286f177e4d8ba1e48b03612f928a3c4bdac78e5651379cec59f95d8651e6
MD5 ac4e6da2bc58860f228638f8b62399f4
BLAKE2b-256 79156c254367d7befe2f54a56f6c569336c38478a5d9aec524ebf61c76602f59

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp312-cp312-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.9.3-cp312-cp312-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for rapidfuzz-3.9.3-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 e53ed2e9b32674ce96eed80b3b572db9fd87aae6742941fb8e4705e541d861ce
MD5 0e997979b612c2ed88080355f0f9b583
BLAKE2b-256 50ab526516c2bd0806047032691f77057048e1e21e6e848917dec042ad974709

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 afe7c72d3f917b066257f7ff48562e5d462d865a25fbcabf40fca303a9fa8d35
MD5 ae6d0c73d16e394a9af94209fadf4682
BLAKE2b-256 05ca1976eab38fd8b77b1cbb3390f59de04eb1ab91bf8736ff8f0fd41cb9cb92

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp312-cp312-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp312-cp312-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 17ff7f7eecdb169f9236e3b872c96dbbaf116f7787f4d490abd34b0116e3e9c8
MD5 869c859cf07c709fc03cd4d65054f744
BLAKE2b-256 bb1e1fe0ec38b04abbfeb5922bf611f37a2c2602f238136c0bb9dfbdd1c1d7c4

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp312-cp312-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp312-cp312-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 51fa1ba84653ab480a2e2044e2277bd7f0123d6693051729755addc0d015c44f
MD5 95c4080d08fe0a9361bacaa0b1514b2f
BLAKE2b-256 67aa0b93dc28c71d26248ce61297698f27a7da00bdda142b82978a0e65581a5b

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 57e7c5bf7b61c7320cfa5dde1e60e678d954ede9bb7da8e763959b2138391401
MD5 df88d5f2fc9c0d9a4e8d37801423ce82
BLAKE2b-256 b1651e576c2cb5dd3632f4bc9de2f79e3101983dca30624328a1293bb0ec9f1f

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 b8ab0fa653d9225195a8ff924f992f4249c1e6fa0aea563f685e71b81b9fcccf
MD5 3b9044573e26abdfc010dbe18f9c01f9
BLAKE2b-256 c7427e580063d904c054ca3eb339124adf0631f5bf7c4168d05459ee319028b7

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 143caf7247449055ecc3c1e874b69e42f403dfc049fc2f3d5f70e1daf21c1318
MD5 26abd13616b7d9b555bf4186c722486d
BLAKE2b-256 e3237da49e42b933c2a00a21cb1ac52663f2b1f072b87059e6a126acae4210e5

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 c52970f7784518d7c82b07a62a26e345d2de8c2bd8ed4774e13342e4b3ff4200
MD5 61c8176477d565eb2ca85ca9db30889e
BLAKE2b-256 9f968e0bd330e220e3e4d4728c8f7df6d83bc7c33da3e839a2f19940bc319d05

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 505d99131afd21529293a9a7b91dfc661b7e889680b95534756134dc1cc2cd86
MD5 05fe5e6c7e7cd75f57fea02c6543548c
BLAKE2b-256 fbd8b20079cc864ef097827478bf2e3a48d89c37ca1bd69ab810973f0897a145

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8319838fb5b7b5f088d12187d91d152b9386ce3979ed7660daa0ed1bff953791
MD5 8401a94788c3111dc85ad0d7d81afcda
BLAKE2b-256 46e07b0f506b32d648b837373f110d3e6694366a81efa2dd4bc3faa1bc6c2bf2

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 83ea7ca577d76778250421de61fb55a719e45b841deb769351fc2b1740763050
MD5 1bf27ea29f33aa26292567b3156228c4
BLAKE2b-256 94deccfe7eb6106c851c2f754651a1e05cac07306f27d51914b2131930a087c8

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b300708c917ce52f6075bdc6e05b07c51a085733650f14b732c087dc26e0aaad
MD5 a04dc51f05f612fd2711b9eed0a8f343
BLAKE2b-256 118cf83bb24d1961ef9124c5491dfcc678426d9f7e3025207de824cdac056642

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5d6a210347d6e71234af5c76d55eeb0348b026c9bb98fe7c1cca89bac50fb734
MD5 42bee89cb1b11c76e68cd2556fda6da3
BLAKE2b-256 0a60cc226a3e7bb8809bc7aaad1ebab2ebd615b78252232a38ae41c1f39ab39a

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp311-cp311-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 0c34139df09a61b1b557ab65782ada971b4a3bce7081d1b2bee45b0a52231adb
MD5 17dcadbe003e24f89f847951b85f4437
BLAKE2b-256 a4fb3c6facb215b04b55d82cf54424d855915a53128430c5cff744864adc9b9b

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 bc1991b4cde6c9d3c0bbcb83d5581dc7621bec8c666c095c65b4277233265a82
MD5 eac45ff46797b506195d518e9b7118e1
BLAKE2b-256 04102c0ef45d4ace8dde87cfb91e48fb5c9976f8e01a57eb3230d90b82801dc5

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp311-cp311-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.9.3-cp311-cp311-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for rapidfuzz-3.9.3-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 14c9f268ade4c88cf77ab007ad0fdf63699af071ee69378de89fff7aa3cae134
MD5 c8a068191464454b12bfb8ef25188165
BLAKE2b-256 fc57c7f23fb3338e9eda5a3e6d9084184d8cd8845a257fb97ccbf88c46c7350a

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 754b719a4990735f66653c9e9261dcf52fd4d925597e43d6b9069afcae700d21
MD5 8212963c37f3f211d549aa08291d56a8
BLAKE2b-256 13b28f6956ccfadff4193f4fa2a93e0c0f460d0521d925654a64f3751dd018a6

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp311-cp311-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp311-cp311-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 93981895602cf5944d89d317ae3b1b4cc684d175a8ae2a80ce5b65615e72ddd0
MD5 7abc0c101f3595493f85311a704955d4
BLAKE2b-256 f1e95e340fa359730135c9db70299d70f9426244fdf5388f4cd8b5781320fc91

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp311-cp311-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp311-cp311-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 2bc8391749e5022cd9e514ede5316f86e332ffd3cfceeabdc0b17b7e45198a8c
MD5 4bb41b2dd0746d1b00c1a7939328be61
BLAKE2b-256 9476e9de1c3f1e7062c824a0d4ee490da24fa36ca0bd3fedc237588fde5c37e2

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 05ee0696ebf0dfe8f7c17f364d70617616afc7dafe366532730ca34056065b8a
MD5 5faeef3f2f0a1c436b2249a0df47d656
BLAKE2b-256 8613ff32d327320dadf82b5d84a6eddf2efc264c0d7db45a04b0aea39fea3840

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 3e6d27dad8c990218b8cd4a5c99cbc8834f82bb46ab965a7265d5aa69fc7ced7
MD5 d1f5594ceb2088bb767a7f010629159b
BLAKE2b-256 38a24e3ce32e17895a581d570db545b599ab153dbcf19f3429537dfe8697a7e8

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fd84b7f652a5610733400307dc732f57c4a907080bef9520412e6d9b55bc9adc
MD5 6b7fc96445013242868c88bd6f3089aa
BLAKE2b-256 447c32cf135edc31a114d87c0ab4a7529f2e2f303e43306dbef8b29246fc2ddd

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 65f45be77ec82da32ce5709a362e236ccf801615cc7163b136d1778cf9e31b14
MD5 b47676b07d28422c5dfa3d9440adda64
BLAKE2b-256 6a85b405d31369711211f34aa3c6e0fc5731e37b00cbff5e0677b70be099a788

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 b80eb7cbe62348c61d3e67e17057cddfd6defab168863028146e07d5a8b24a89
MD5 b69d0b2c7bb8b26d2a6edf087be27368
BLAKE2b-256 84c2f90f19f60b55874c1157ef8f2ef9a13a31a8be9a9dee2c71fb0559ef4df3

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f50fed4a9b0c9825ff37cf0bccafd51ff5792090618f7846a7650f21f85579c9
MD5 2eb74f3148b2890c92249400f28b25e1
BLAKE2b-256 51dd6fdff521c22436fe0dd0f604bb50f9cb6b86b21871ac0fa6b130932082bf

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5b422c0a6fe139d5447a0766268e68e6a2a8c2611519f894b1f31f0a392b9167
MD5 c0bfff8bb5afa86056e2b90d87f17f47
BLAKE2b-256 e6f2e49146c3b28eeb2543b6943eb984a75b463848e78c9a9b3ff73de3f2f1e5

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a4fc7b784cf987dbddc300cef70e09a92ed1bce136f7bb723ea79d7e297fe76d
MD5 183b992b0729f96ec01fd35f6789a024
BLAKE2b-256 ac4dfe74f3b300bef1cf4bb5f4e06e099384c04a9c18fa0449fccaa9bcff832b

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f57e8305c281e8c8bc720515540e0580355100c0a7a541105c6cafc5de71daae
MD5 21a1b6613e0383081d6bbfd0f6cb43c3
BLAKE2b-256 4fec1fa416c3ad850f21b2802e6c0497789782d8392feade74c9d15faa935041

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp310-cp310-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 790b0b244f3213581d42baa2fed8875f9ee2b2f9b91f94f100ec80d15b140ba9
MD5 4930c9add55f336ec3eb3f029cd96713
BLAKE2b-256 24d7e312477f87f8ca0f0ce361610441751fd105ead64a75a4921795fd7a5607

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 119c010e20e561249b99ca2627f769fdc8305b07193f63dbc07bca0a6c27e892
MD5 bf742c46ba1f3e6329031e652156898f
BLAKE2b-256 9cfcdc69c6119a04041b69d5c748ee03bca44d558f9b08e91c82a9b737eaa334

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.9.3-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for rapidfuzz-3.9.3-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 6073a46f61479a89802e3f04655267caa6c14eb8ac9d81a635a13805f735ebc1
MD5 253b1525e856516275fc71de332dc473
BLAKE2b-256 e2fca5da5e491d7b2e4883b26211b5c76a63bf9ff8da9ae3f07ffd9e49a5537c

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 875b581afb29a7213cf9d98cb0f98df862f1020bce9d9b2e6199b60e78a41d14
MD5 ada1c7f71797d7c590fdcb915d911436
BLAKE2b-256 cbad55d162c72cb13ecc230a9b868fc745da7a93d35cc70911042054301ddac0

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp310-cp310-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp310-cp310-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 0d055da0e801c71dd74ba81d72d41b2fa32afa182b9fea6b4b199d2ce937450d
MD5 fbc45ae233022b45892950963a305e61
BLAKE2b-256 619da6d65e93c74967d534aadbc0ad9a29e40ff124c5723950916ef85ea3a1ee

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp310-cp310-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp310-cp310-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 a24603dd05fb4e3c09d636b881ce347e5f55f925a6b1b4115527308a323b9f8e
MD5 23a82cf02cccf13b7e55f621b2a78673
BLAKE2b-256 ee83c69ed50e24750d5deb2d55becc8d6bdff894e0941bba6bf579b79870052f

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 959a15186d18425d19811bea86a8ffbe19fd48644004d29008e636631420a9b7
MD5 c93c5f39f725aa3b7ece34bc2435115d
BLAKE2b-256 16516b072763ae87580ddf3600beda439d360662a234e6334dbc901bca7f5e2c

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 87bb8d84cb41446a808c4b5f746e29d8a53499381ed72f6c4e456fe0f81c80a8
MD5 a9cd8646c91840ce7d25b902239e31f3
BLAKE2b-256 d2b4d3112216244ac16e1240ec2470835ac61a3124b35d6fd7e068637f605eca

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5c7ca5b6050f18fdcacdada2dc5fb7619ff998cd9aba82aed2414eee74ebe6cd
MD5 386eeffa524abf1d4017e541324f88f8
BLAKE2b-256 2d5e4539f4e2603ed557be8db700925a059753334183561243b9f8adb75cd85a

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 53e06e4b81f552da04940aa41fc556ba39dee5513d1861144300c36c33265b76
MD5 ec581a6cf17a59bce2b8b7c1452688ec
BLAKE2b-256 236e518ff1f9c85cfae46bb9ad27053ce65e1f742492f29223dff8a7edfcfa60

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 b777cd910ceecd738adc58593d6ed42e73f60ad04ecdb4a841ae410b51c92e0e
MD5 e34afcee9d01495f9994ba2a906ecdcd
BLAKE2b-256 ae6d7ebcc312da01373e41c5a7ca699a144e0f12ccba6fa0d0353e0974f4c95c

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a96c5225e840f1587f1bac8fa6f67562b38e095341576e82b728a82021f26d62
MD5 bf0c485230ef506943220e739ea39500
BLAKE2b-256 c807db1f5c400461442f7eb0745f1e22216771e8151400cc942c255d323beef8

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 153f23c03d4917f6a1fc2fb56d279cc6537d1929237ff08ee7429d0e40464a18
MD5 01393bee929abb6449954bec1002c6e6
BLAKE2b-256 6e798c58a2d70b8e2bb53d536db89c0ca08e9e753fca98b4a864921318e11d78

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b3bd0d9632088c63a241f217742b1cf86e2e8ae573e01354775bd5016d12138c
MD5 c7c7c50a0d304ce4eefba894d77426b4
BLAKE2b-256 f714602ab1ce3385398e1f53343b3096a1acdfb399bede18e8773bd1339df0ba

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bdb8c5b8e29238ec80727c2ba3b301efd45aa30c6a7001123a6647b8e6f77ea4
MD5 eecd224297cb68e4ff6a59f6051dd749
BLAKE2b-256 57641839dd18b34d056ea8b64bd8f6fb5a3823bb11a34132636280ecc3016932

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: rapidfuzz-3.9.3-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 862.8 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for rapidfuzz-3.9.3-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 58c6a4936190c558d5626b79fc9e16497e5df7098589a7e80d8bff68148ff096
MD5 45ae4da365262b36ebe27dc3c80e45a4
BLAKE2b-256 166188ce04fe7023daba4f33c8854a8b481511a3953e357789ef546b1383d384

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-3.9.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for rapidfuzz-3.9.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 15e4158ac4b3fb58108072ec35b8a69165f651ba1c8f43559a36d518dbf9fb3f
MD5 f0d5f742859e6ad842c869ffda07f253
BLAKE2b-256 caecbaa44f84a507beb104de06b371d247dffcdc7e2af2fcbf1ced864d3df7eb

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.9.3-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for rapidfuzz-3.9.3-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 5d0cb272d43e6d3c0dedefdcd9d00007471f77b52d2787a4695e9dd319bb39d2
MD5 c76fc6930b643915bd6675c1ce4773a5
BLAKE2b-256 9749aed5dd122280cfd70b38c6cb3a9fdd237136b3657c5c8723fd28256f3e7d

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 378d1744828e27490a823fc6fe6ebfb98c15228d54826bf4e49e4b76eb5f5579
MD5 f4856d7ceead715d9944ef842eac0855
BLAKE2b-256 e377a0829ece08a7d02ccbe90f8f81db4e0268a3edb11ee5c6125f524fd9bf13

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp39-cp39-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp39-cp39-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 5d0abbacdb06e27ff803d7ae0bd0624020096802758068ebdcab9bd49cf53115
MD5 ecfd7d52ecaa9b691f746202c18d3eb4
BLAKE2b-256 763136809c1d67fef6ebbf2fa77e70c488f133c0894b287c54387342eaf0fef4

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp39-cp39-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp39-cp39-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 dd789100fc852cffac1449f82af0da139d36d84fd9faa4f79fc4140a88778343
MD5 11216e32a932059eb27a2861ba8aa8d5
BLAKE2b-256 897c626db60e864e7f76914d2ab483af1ccaec46daaf0232df705419b4bf769b

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp39-cp39-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp39-cp39-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 802ca2cc8aa6b8b34c6fdafb9e32540c1ba05fca7ad60b3bbd7ec89ed1797a87
MD5 bf56cd599547ec5d738bb17a20d0aeb8
BLAKE2b-256 de8450062916ec3f109d78b3c34b609f8218dc3fee356b314df9ef9afced6416

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 256e07d3465173b2a91c35715a2277b1ee3ae0b9bbab4e519df6af78570741d0
MD5 30ec481689da11fe601be91f88b533dc
BLAKE2b-256 f83a5ae08e106d318c79ad5791fb735c5ea3a0e67604bae864330cdc600135d6

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 aca21c0a34adee582775da997a600283e012a608a107398d80a42f9a57ad323d
MD5 0dcacdf2c40aeab7cf2251a319e92070
BLAKE2b-256 4b84a580a54a2b00407fdecae536afc3ccc3db5fc84ab79f72c7e45ca67de14b

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 cbe93ba1725a8d47d2b9dca6c1f435174859427fbc054d83de52aea5adc65729
MD5 e6061ba124ae3afc14062440de8857b1
BLAKE2b-256 fe2b02bad69d202aa2ed3d0510b36e238a8ad62d1d9c9fc4625ffe20dc8276c4

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 c6e65a301fcd19fbfbee3a514cc0014ff3f3b254b9fd65886e8a9d6957fb7bca
MD5 2eb8b6582ae4789d9f45e497262c9734
BLAKE2b-256 b2e71ec14d76433ae97730983b5053751784cbb41455b45908590a523621cfad

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 5e2b827258beefbe5d3f958243caa5a44cf46187eff0c20e0b2ab62d1550327a
MD5 7da59038f8c220079ffd88425aaf5549
BLAKE2b-256 ddb08bff95a180f40667056b9c8dde8e88b0c92dcb4382316c5e556046ed7aaa

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 964c08481aec2fe574f0062e342924db2c6b321391aeb73d68853ed42420fd6d
MD5 0caf83b4861757ac95e07eba0fad30f7
BLAKE2b-256 05ae78222c4b320d4bc0d6ff99057f69b17620d37118aebc5f45b3d76eb95b59

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a56da3aff97cb56fe85d9ca957d1f55dbac7c27da927a86a2a86d8a7e17f80aa
MD5 07e9c2db9dc31b565e5dfa65a879294a
BLAKE2b-256 5ddb5c505219951ace1f938e0b74a072ae15b1d478af4f6b5ed7f37097bb02e2

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 21047f55d674614eb4b0ab34e35c3dc66f36403b9fbfae645199c4a19d4ed447
MD5 c64bddcf1350faeb60845cfe22ebe368
BLAKE2b-256 16013c34b4c850ad10be2aed9aff24743465588bcf9184ac1fa055efbb98004c

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-3.9.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for rapidfuzz-3.9.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 604e0502a39cf8e67fa9ad239394dddad4cdef6d7008fdb037553817d420e108
MD5 94a332039e83f2c05e82e96f7adadaa9
BLAKE2b-256 db9f5708c977584aa406de23bec1c3cd0d1747b05f762c7f0368f0692fc1298e

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.9.3-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for rapidfuzz-3.9.3-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 8add34061e5cd561c72ed4febb5c15969e7b25bda2bb5102d02afc3abc1f52d0
MD5 e76c621144759738c780cd203ac58115
BLAKE2b-256 3fcecd09db59d31c0ccb3a26bdec286a6801c314d0493e3f9edfa60239751507

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 77b5c4f3e72924d7845f0e189c304270066d0f49635cf8a3938e122c437e58de
MD5 7576bdc7c1a2cba612d86e25c3d9abbb
BLAKE2b-256 5c279fdad57bd5f679f2b948f98ec0508fc8c89e143be7a54b6c2e8559331183

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp38-cp38-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp38-cp38-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 5276df395bd8497397197fca2b5c85f052d2e6a66ffc3eb0544dd9664d661f95
MD5 d754f55621726b76949cc85f0bf2cbe8
BLAKE2b-256 9578c093b79a812081fa75e031c53d99355a6c0ec4ee13244518e1954d23175a

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp38-cp38-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp38-cp38-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 6175682a829c6dea4d35ed707f1dadc16513270ef64436568d03b81ccb6bdb74
MD5 b9a98a7f9f16e6c046977c0a79633701
BLAKE2b-256 27fee8d05f91108f3e6c1da031b1d6272fbe9360d1015d0d8fe10adad442cc09

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp38-cp38-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp38-cp38-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 53c7f27cdf899e94712972237bda48cfd427646aa6f5d939bf45d084780e4c16
MD5 6c9434f194a086381732c4d428fa803f
BLAKE2b-256 b0aa01d3a1153caaf047c53a59da592987e5a4e77e943a8f8ee0a6c001b4c62f

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp38-cp38-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp38-cp38-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 acbe4b6f1ccd5b90c29d428e849aa4242e51bb6cab0448d5f3c022eb9a25f7b1
MD5 a5879007819f9e4ed68fc8d95bdd4aa0
BLAKE2b-256 5bedc4f29cc9b44bb763339cfa2e74d33b2e2b1c80b82013e842c50a6e3d0228

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d36447d21b05f90282a6f98c5a33771805f9222e5d0441d03eb8824e33e5bbb4
MD5 00ccced6d9d65ec57a16235e56f26bb2
BLAKE2b-256 b8a83694d47d6c7107b6b7d4eb10d9dcf651c01aca93968bd26b1c3fa38214cf

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 858ba57c05afd720db8088a8707079e8d024afe4644001fe0dbd26ef7ca74a65
MD5 7295afc351fc92714eb203594912b5cf
BLAKE2b-256 69be2700afe331ec0658f55b558bc38644c335e90721e0740b476e054b762f2e

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 8f917eaadf5388466a95f6a236f678a1588d231e52eda85374077101842e794e
MD5 45ff5c3a3b359654ac8cd5da7296fe7b
BLAKE2b-256 249255aca1c57dba96b639aa971de83ac16213b95424ce1e0b630a81b8ef1f3a

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 de077c468c225d4c18f7188c47d955a16d65f21aab121cbdd98e3e2011002c37
MD5 944d030a308c084611753d9b4400b59b
BLAKE2b-256 97c4c936b15ebfe0d794e89106d2415f79c6698cba7ef3c7692410dec0e35ecf

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 efe6e200a75a792d37b960457904c4fce7c928a96ae9e5d21d2bd382fe39066e
MD5 ead8c1b5b954edaf7139caba1a31c4f4
BLAKE2b-256 2afcfbed40f9486d2f27a146ba15bb8ec1f1ec4fc8bad7e7910ced812c75dbd8

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b5bc0fdbf419493163c5c9cb147c5fbe95b8e25844a74a8807dcb1a125e630cf
MD5 993bcfb908680cdec9d0f89028ae51f8
BLAKE2b-256 3649b91d1526dcc47b3e40a83e04d6a50bd9a8cda57e937719e22f144c270a58

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a39890013f6d5b056cc4bfdedc093e322462ece1027a57ef0c636537bdde7531
MD5 4ace41f775dea4ad90a269d7862b9bbe
BLAKE2b-256 762badf47deaeb643c08adb419418dbd192d3a5bbf3121f26b450829563b2a42

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page