Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continuous Integration PyPI package version Conda Version Python versions
Documentation Code Coverage GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation
  5. It can be largely used as a drop in replacement for fuzzywuzzy. However there are a couple API differences described here

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++17 capable compiler.

git clone --recursive https://github.com/rapidfuzz/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.
Note that from RapidFuzz 3.0.0, strings are not preprocessed(removing all non alphanumeric characters, trimming whitespaces, converting all characters to lower case) by default. Which means that when comparing two strings that have the same characters but different cases("this is a word", "THIS IS A WORD") their similarity score value might be different, so when comparing such strings you might see a difference in score value compared to previous versions. Some examples of string matching with preprocessing can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and distance.

Simple Ratio

> from rapidfuzz import fuzz
> fuzz.ratio("this is a test", "this is a test!")
96.55172413793103

Partial Ratio

> from rapidfuzz import fuzz
> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> from rapidfuzz import fuzz
> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.9090909090909
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> from rapidfuzz import fuzz
> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
84.21052631578947
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0
# Returns 100.0 if one string is a subset of the other, regardless of extra content in the longer string
> fuzz.token_set_ratio("fuzzy was a bear but not a dog", "fuzzy was a bear")
100.0
# Score is reduced only when there is explicit disagreement in the two strings
> fuzz.token_set_ratio("fuzzy was a bear but not a dog", "fuzzy was a bear but not a cat")
92.3076923076923

Weighted Ratio

> from rapidfuzz import fuzz
> fuzz.WRatio("this is a test", "this is a new test!!!")
85.5

> from rapidfuzz import fuzz, utils
> # Removing non alpha numeric characters("!") from the string
> fuzz.WRatio("this is a test", "this is a new test!!!", processor=utils.default_process) # here "this is a new test!!!" is converted to "this is a new test"
95.0
> fuzz.WRatio("this is a test", "this is a new test")
95.0

> # Converting string to lower case
> fuzz.WRatio("this is a word", "THIS IS A WORD")
21.42857142857143
> fuzz.WRatio("this is a word", "THIS IS A WORD", processor=utils.default_process) # here "THIS IS A WORD" is converted to "this is a word"
100.0

Quick Ratio

> from rapidfuzz import fuzz
> fuzz.QRatio("this is a test", "this is a new test!!!")
80.0

> from rapidfuzz import fuzz, utils
> # Removing non alpha numeric characters("!") from the string
> fuzz.QRatio("this is a test", "this is a new test!!!", processor=utils.default_process)
87.5
> fuzz.QRatio("this is a test", "this is a new test")
87.5

> # Converting string to lower case
> fuzz.QRatio("this is a word", "THIS IS A WORD")
21.42857142857143
> fuzz.QRatio("this is a word", "THIS IS A WORD", processor=utils.default_process)
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 76.92307692307692, 1), ('New York Giants', 64.28571428571428, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
('Dallas Cowboys', 83.07692307692308, 3)

> # With preprocessing
> from rapidfuzz import process, fuzz, utils
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2, processor=utils.default_process)
[('New York Jets', 100.0, 1), ('New York Giants', 78.57142857142857, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio, processor=utils.default_process)
('Dallas Cowboys', 90.0, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparison between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparison I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
    "".join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
    for _ in range(10_000)
]
samples = words[:: len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
    for word in words:
        scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with cdist in the following way:

cdist(samples, words, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like cdist is a lot faster than directly using it. That's why they should be used whenever possible.

Benchmark cdist

Support the project

If you are using RapidFuzz for your work and feel like giving a bit of your own benefit back to support the project, consider sending us money through GitHub Sponsors or PayPal that we can use to buy us free time for the maintenance of this great library, to fix bugs in the software, review and integrate code contributions, to improve its features and documentation, or to just take a deep breath and have a cup of tea every once in a while. Thank you for your support.

Support the project through GitHub Sponsors or via PayPal:

.

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. That's why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

This version

3.9.4

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-3.9.4.tar.gz (1.6 MB view details)

Uploaded Source

Built Distributions

rapidfuzz-3.9.4-pp310-pypy310_pp73-win_amd64.whl (1.5 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-3.9.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-3.9.4-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (5.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-3.9.4-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-3.9.4-pp310-pypy310_pp73-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded PyPy macOS 11.0+ ARM64

rapidfuzz-3.9.4-pp310-pypy310_pp73-macosx_10_15_x86_64.whl (1.9 MB view details)

Uploaded PyPy macOS 10.15+ x86-64

rapidfuzz-3.9.4-pp39-pypy39_pp73-win_amd64.whl (1.5 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-3.9.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-3.9.4-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (5.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-3.9.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-3.9.4-pp39-pypy39_pp73-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded PyPy macOS 11.0+ ARM64

rapidfuzz-3.9.4-pp39-pypy39_pp73-macosx_10_15_x86_64.whl (1.9 MB view details)

Uploaded PyPy macOS 10.15+ x86-64

rapidfuzz-3.9.4-pp38-pypy38_pp73-win_amd64.whl (1.5 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-3.9.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-3.9.4-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (5.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-3.9.4-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-3.9.4-pp38-pypy38_pp73-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded PyPy macOS 11.0+ ARM64

rapidfuzz-3.9.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-3.9.4-cp312-cp312-win_arm64.whl (850.2 kB view details)

Uploaded CPython 3.12 Windows ARM64

rapidfuzz-3.9.4-cp312-cp312-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

rapidfuzz-3.9.4-cp312-cp312-win32.whl (1.8 MB view details)

Uploaded CPython 3.12 Windows x86

rapidfuzz-3.9.4-cp312-cp312-musllinux_1_2_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

rapidfuzz-3.9.4-cp312-cp312-musllinux_1_2_s390x.whl (3.4 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ s390x

rapidfuzz-3.9.4-cp312-cp312-musllinux_1_2_ppc64le.whl (2.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ppc64le

rapidfuzz-3.9.4-cp312-cp312-musllinux_1_2_i686.whl (7.2 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ i686

rapidfuzz-3.9.4-cp312-cp312-musllinux_1_2_aarch64.whl (2.4 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

rapidfuzz-3.9.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.9.4-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ s390x

rapidfuzz-3.9.4-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.9.4-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (5.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

rapidfuzz-3.9.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.9.4-cp312-cp312-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

rapidfuzz-3.9.4-cp312-cp312-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

rapidfuzz-3.9.4-cp311-cp311-win_arm64.whl (855.9 kB view details)

Uploaded CPython 3.11 Windows ARM64

rapidfuzz-3.9.4-cp311-cp311-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

rapidfuzz-3.9.4-cp311-cp311-win32.whl (1.8 MB view details)

Uploaded CPython 3.11 Windows x86

rapidfuzz-3.9.4-cp311-cp311-musllinux_1_2_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

rapidfuzz-3.9.4-cp311-cp311-musllinux_1_2_s390x.whl (3.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ s390x

rapidfuzz-3.9.4-cp311-cp311-musllinux_1_2_ppc64le.whl (2.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ppc64le

rapidfuzz-3.9.4-cp311-cp311-musllinux_1_2_i686.whl (7.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ i686

rapidfuzz-3.9.4-cp311-cp311-musllinux_1_2_aarch64.whl (2.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

rapidfuzz-3.9.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.9.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

rapidfuzz-3.9.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.9.4-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (6.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

rapidfuzz-3.9.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.9.4-cp311-cp311-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

rapidfuzz-3.9.4-cp311-cp311-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

rapidfuzz-3.9.4-cp310-cp310-win_arm64.whl (854.5 kB view details)

Uploaded CPython 3.10 Windows ARM64

rapidfuzz-3.9.4-cp310-cp310-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-3.9.4-cp310-cp310-win32.whl (1.8 MB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-3.9.4-cp310-cp310-musllinux_1_2_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

rapidfuzz-3.9.4-cp310-cp310-musllinux_1_2_s390x.whl (3.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ s390x

rapidfuzz-3.9.4-cp310-cp310-musllinux_1_2_ppc64le.whl (2.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ppc64le

rapidfuzz-3.9.4-cp310-cp310-musllinux_1_2_i686.whl (7.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ i686

rapidfuzz-3.9.4-cp310-cp310-musllinux_1_2_aarch64.whl (2.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

rapidfuzz-3.9.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.9.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

rapidfuzz-3.9.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.9.4-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (6.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

rapidfuzz-3.9.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.9.4-cp310-cp310-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-3.9.4-cp310-cp310-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-3.9.4-cp39-cp39-win_arm64.whl (856.0 kB view details)

Uploaded CPython 3.9 Windows ARM64

rapidfuzz-3.9.4-cp39-cp39-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-3.9.4-cp39-cp39-win32.whl (1.8 MB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-3.9.4-cp39-cp39-musllinux_1_2_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

rapidfuzz-3.9.4-cp39-cp39-musllinux_1_2_s390x.whl (3.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ s390x

rapidfuzz-3.9.4-cp39-cp39-musllinux_1_2_ppc64le.whl (2.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ppc64le

rapidfuzz-3.9.4-cp39-cp39-musllinux_1_2_i686.whl (7.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ i686

rapidfuzz-3.9.4-cp39-cp39-musllinux_1_2_aarch64.whl (2.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARM64

rapidfuzz-3.9.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.9.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

rapidfuzz-3.9.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.9.4-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (6.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

rapidfuzz-3.9.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.9.4-cp39-cp39-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-3.9.4-cp39-cp39-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-3.9.4-cp38-cp38-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-3.9.4-cp38-cp38-win32.whl (1.8 MB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-3.9.4-cp38-cp38-musllinux_1_2_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

rapidfuzz-3.9.4-cp38-cp38-musllinux_1_2_s390x.whl (3.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ s390x

rapidfuzz-3.9.4-cp38-cp38-musllinux_1_2_ppc64le.whl (2.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ppc64le

rapidfuzz-3.9.4-cp38-cp38-musllinux_1_2_i686.whl (7.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ i686

rapidfuzz-3.9.4-cp38-cp38-musllinux_1_2_aarch64.whl (2.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ARM64

rapidfuzz-3.9.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.9.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

rapidfuzz-3.9.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.9.4-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (6.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

rapidfuzz-3.9.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.9.4-cp38-cp38-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-3.9.4-cp38-cp38-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-3.9.4.tar.gz.

File metadata

  • Download URL: rapidfuzz-3.9.4.tar.gz
  • Upload date:
  • Size: 1.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for rapidfuzz-3.9.4.tar.gz
Algorithm Hash digest
SHA256 366bf8947b84e37f2f4cf31aaf5f37c39f620d8c0eddb8b633e6ba0129ca4a0a
MD5 b11cdd26c98750a7b329b0a516710e77
BLAKE2b-256 a2ce7e127c2216bfcca8b3bc3cfd0075caf106f130a5068164f07a56d07cc091

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 d6481e099ff8c4edda85b8b9b5174c200540fd23c8f38120016c765a86fa01f5
MD5 c5454b7bd7482caab904f788873853a0
BLAKE2b-256 16a6ed1733661a068769002b810c6dee2d4b7512d99580895a179e8f3fab7878

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e272df61bee0a056a3daf99f9b1bd82cf73ace7d668894788139c868fdf37d6f
MD5 cfd852f186fdf0d62367bb7123052644
BLAKE2b-256 769d13f7fbef8d01dc05c0dfdcdec90744b724fe6ebdcc849b309efd8ccf0ba9

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 17ab8b7d10fde8dd763ad428aa961c0f30a1b44426e675186af8903b5d134fb0
MD5 a6b1cba21f9501bdeaa954a64b94a82a
BLAKE2b-256 b9d6486f44c03d9ebf220bb9d9323041814778694caf7dec1a98f396cc00221c

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 098d231d4e51644d421a641f4a5f2f151f856f53c252b03516e01389b2bfef99
MD5 32be3eb7746b1cbdb1db06484ed321bf
BLAKE2b-256 df6d3886364021278c98e8749d914c38c1f99c6c6a42474b60c759aaecdb13c3

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-pp310-pypy310_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-pp310-pypy310_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e61b03509b1a6eb31bc5582694f6df837d340535da7eba7bedb8ae42a2fcd0b9
MD5 6f854a3c46eeb3b4b11d41308653cabc
BLAKE2b-256 04baee6de2097a674d12673bf1ee20e5cd77868c1c8540cb5cff8ac73f37f78d

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-pp310-pypy310_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 20488ade4e1ddba3cfad04f400da7a9c1b91eff5b7bd3d1c50b385d78b587f4f
MD5 bfe76ebda9b988e25fabb5bb26c3533b
BLAKE2b-256 b235b9d934e74b38cc1c75f9d93991952cefe305f612a0faa22633725cd023b5

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 4fb96ba96d58c668a17a06b5b5e8340fedc26188e87b0d229d38104556f30cd8
MD5 529e71726349cc4ef8c04787c6d67e73
BLAKE2b-256 34f41b8c61adf9d6d71de3bc283973635ed0bebc2e099d05c8350ea2a69fcbf4

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3a944e546a296a5fdcaabb537b01459f1b14d66f74e584cb2a91448bffadc3c1
MD5 c132c36df18a1d794138677e796642da
BLAKE2b-256 4ca2650d308f175bf0914dd7d339deb745addbb229a40901f3f5948190272482

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b0fc91ac59f4414d8542454dfd6287a154b8e6f1256718c898f695bdbb993467
MD5 b4aed747229cc393ab943d1d04aadc96
BLAKE2b-256 3c153793357c1c3e1d8e2047eeba12e3a73fe7e05a3ce46597014b65421bff7c

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3fe86b82b776554add8f900b6af202b74eb5efe8f25acdb8680a5c977608727f
MD5 71c363afe1dbf2259cb2d546d60974cd
BLAKE2b-256 423e4a15d51a222297ff7ba081501ff4eed8f97d033525774283d1b5700b519c

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-pp39-pypy39_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-pp39-pypy39_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 addcdd3c3deef1bd54075bd7aba0a6ea9f1d01764a08620074b7a7b1e5447cb9
MD5 1c65051e5b4e57bfac1fd12f79befe48
BLAKE2b-256 c4e248816e3164577301badec395526fc785b06e269afed356a59ca8c07109d7

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-pp39-pypy39_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-pp39-pypy39_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 0772150d37bf018110351c01d032bf9ab25127b966a29830faa8ad69b7e2f651
MD5 dcd07f1d9e146f276797ade74ca203b0
BLAKE2b-256 b5e26c7e939334ecbf3eab6c9dc4f9fc72c41948f0e1b48b87575070e181c957

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 3a555e3c841d6efa350f862204bb0a3fea0c006b8acc9b152b374fa36518a1c6
MD5 c5f0f72db1448ccb2035cd8305c49549
BLAKE2b-256 7aff953d46a055bf78821358d3236b74874924ba1136622f13b4e8677b245b1b

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 aee5f6b8321f90615c184bd8a4c676e9becda69b8e4e451a90923db719d6857c
MD5 632ca44705108a255d5a2b404b002c96
BLAKE2b-256 ef4a768e89c8cf4e373ad562090a195d607a9ec9f4f195daf5b4b4b09a01e11c

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f74ed072c2b9dc6743fb19994319d443a4330b0e64aeba0aa9105406c7c5b9c2
MD5 87f14a52cbfc681ac69fc676f72e4c74
BLAKE2b-256 012a5cd883cac6b6549c129951021ce48227fcccbef09609eb648137e757deaa

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4d38b4e026fcd580e0bda6c0ae941e0e9a52c6bc66cdce0b8b0da61e1959f5f8
MD5 e6c0ba6f5adecde24a37076d65053d44
BLAKE2b-256 fb1abacf65772a618b0d4bc11a359098549fe36bcfb0e81e10cb956a4ad12a65

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-pp38-pypy38_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-pp38-pypy38_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 af65020c0dd48d0d8ae405e7e69b9d8ae306eb9b6249ca8bf511a13f465fad85
MD5 7504b8f5965e66ab329a04944076c33e
BLAKE2b-256 c413d13aa2d211d72e4af7799d55ef524b20ad72ec8b494296508b06f2d2a705

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ad61676e9bdae677d577fe80ec1c2cea1d150c86be647e652551dcfe505b1113
MD5 1cd813a21669656378ad0e1bd4159f1a
BLAKE2b-256 85177b465787dd6c8032d22e7f3c610d9c116e81492725fae956314ff5f7caec

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp312-cp312-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 f2d2846f3980445864c7e8b8818a29707fcaff2f0261159ef6b7bd27ba139296
MD5 3d763220ac9576c48c47063c9bbd570d
BLAKE2b-256 08e45ff70319bfb20408cd0cee7cf822698155a7b44761d60cca64f13983fdb1

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 c76da20481c906e08400ee9be230f9e611d5931a33707d9df40337c2655c84b5
MD5 8c6c592c66f36c8d93f7018014026759
BLAKE2b-256 9d027cbcf855bd77b95c5562e5a5480353390b0f1164131b18518cdf9eedc594

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp312-cp312-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.9.4-cp312-cp312-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for rapidfuzz-3.9.4-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 52e3d89377744dae68ed7c84ad0ddd3f5e891c82d48d26423b9e066fc835cc7c
MD5 d0dcccb0713a96d694b2384bae2fb889
BLAKE2b-256 57291808e5c51053935fa211ba4e76881ac51f2c726e4e7ac1160238e22cd01b

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 2797fb847d89e04040d281cb1902cbeffbc4b5131a5c53fc0db490fd76b2a547
MD5 257aa9773fe142cfa866129023951e5a
BLAKE2b-256 579743c013892bb06ed2456a6b1b1974cefb30318a27f78357c89a2e429e1e51

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp312-cp312-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp312-cp312-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 fe833493fb5cc5682c823ea3e2f7066b07612ee8f61ecdf03e1268f262106cdd
MD5 bb3c53496600d4d5d7c94764976e4da2
BLAKE2b-256 5fd150894b6593488104e6862d061d86d9695c4969c862772b0066971351aa50

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp312-cp312-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp312-cp312-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 cb934363380c60f3a57d14af94325125cd8cded9822611a9f78220444034e36e
MD5 f3ba8eb38ff0662c2e06684dd8432c56
BLAKE2b-256 a26537c808fce62b7665a1fc45e3d9d2b40c770aff00b3add03fc1535d928bae

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 60ff67c690acecf381759c16cb06c878328fe2361ddf77b25d0e434ea48a29da
MD5 d55a2cf15b114389fefd94e503e4d87c
BLAKE2b-256 c92aa3df4de6f8e648b71ed89865c591d94c3360b5decd4b7d80aab4b2f389e5

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 cd6ac61b74fdb9e23f04d5f068e6cf554f47e77228ca28aa2347a6ca8903972f
MD5 09bdb78905a887ffdea3b5c4869d3e65
BLAKE2b-256 f0585407c458915730a6e29dc07dcdd8a3762bc4dc73121fb3bf4b699a802aff

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 db0bf0663b4b6da1507869722420ea9356b6195aa907228d6201303e69837af9
MD5 7e431172e8839abb9299da1021eb409e
BLAKE2b-256 0fb0ba391db47a5ae3139c97b68f97248c79c794293818be26899dbaee9d16c8

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 167e745f98baa0f3034c13583e6302fb69249a01239f1483d68c27abb841e0a1
MD5 9e4128fc0e270eb3922c0b56ea72bbdd
BLAKE2b-256 fd32bf315cce529fe872cbca723c12001b3c49ab7f5955065f73ae967c74232b

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 8d9d58689aca22057cf1a5851677b8a3ccc9b535ca008c7ed06dc6e1899f7844
MD5 3ca3443e22c22ac530b0ee0f5a36ee99
BLAKE2b-256 7d2380cb6d3377f752aa25118609b5da0ab6207aeabb3ad2a0003acfac37a69a

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f2464bb120f135293e9a712e342c43695d3d83168907df05f8c4ead1612310c7
MD5 3c59ff681df189840d33ef5c65e91946
BLAKE2b-256 527e8ae598431ecc7770c9dd712c7a0eb0863f74036d7c3bd3193575eff55dee

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0c8fc973adde8ed52810f590410e03fb6f0b541bbaeb04c38d77e63442b2df4c
MD5 897abae2d4be96969b7415de464793cc
BLAKE2b-256 74355883cb58628cdbec69b816cd5f1e478b38807b7aa8f61fd7a723c205186b

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cf5bcf22e1f0fd273354462631d443ef78d677f7d2fc292de2aec72ae1473e66
MD5 f9ea7393fa0a66405feb08564969d796
BLAKE2b-256 fdbf269e04dbdf11ef1cba41cfa2acc2a9705e6865f16fcb7c7a3f294aef836e

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b5d5072b548db1b313a07d62d88fe0b037bd2783c16607c647e01b070f6cf9e5
MD5 e40869ffd2342fd2407095d2155ee610
BLAKE2b-256 99e2ff758e097671be167ee2fb82806c9eede237b883e9fcb34120e6122e3313

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp311-cp311-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 40419e98b10cd6a00ce26e4837a67362f658fc3cd7a71bd8bd25c99f7ee8fea5
MD5 960de172057f2ed0de330117c66fae07
BLAKE2b-256 12be830d9a4079f1fbcae088d65bc9aa70f0f8640cc2b076c0252d7a5311ed0c

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 d8e9130fe5d7c9182990b366ad78fd632f744097e753e08ace573877d67c32f8
MD5 cdb839fbaa4dd322080f1336ac3891ba
BLAKE2b-256 60a66c2f5e9be933150a6d55ffce4ff6d9701ddfc5b267c789a84674eadbd373

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp311-cp311-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.9.4-cp311-cp311-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for rapidfuzz-3.9.4-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 f187a9c3b940ce1ee324710626daf72c05599946bd6748abe9e289f1daa9a077
MD5 30160fe48dfd63b4934f2885a225fa4e
BLAKE2b-256 1ece9046eac5e99e9ff0b76147fd581fc93a130882f8a4d72f14592adb5b852e

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 26aa7eece23e0df55fb75fbc2a8fb678322e07c77d1fd0e9540496e6e2b5f03e
MD5 19686468c220765913540dd875ccb22c
BLAKE2b-256 780aa7381b5997a0269650a4592841d22c7054c74fa6d3a7f9fafc924066b375

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp311-cp311-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp311-cp311-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 f16f5d1c4f02fab18366f2d703391fcdbd87c944ea10736ca1dc3d70d8bd2d8b
MD5 7c2af6f1d37a94a7b45367d6d94e3b2d
BLAKE2b-256 d0d2058e72690c5bd09dfd61683482d2e1aa761e5b46e51b640ebe9e005127c0

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp311-cp311-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp311-cp311-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 ded58612fe3b0e0d06e935eaeaf5a9fd27da8ba9ed3e2596307f40351923bf72
MD5 c834cf5bf2e9928e5ed374d59286272d
BLAKE2b-256 7629fd4479edffd6862bc1af867a35bff090c25fe86ac54875fb19f09c5e38fe

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 90a82143c14e9a14b723a118c9ef8d1bbc0c5a16b1ac622a1e6c916caff44dd8
MD5 6f79bd451bd89d3bb5d17b18ea02f41c
BLAKE2b-256 8a5a4a8d6c584ab20a4332ec68b8c71988db1ebd60e52176307fcc80bf3b9df7

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 129627d730db2e11f76169344a032f4e3883d34f20829419916df31d6d1338b1
MD5 ed1f22214f949f2d2a63bbd401960879
BLAKE2b-256 9f9f72c9207ebd85b50f87f54c3a7ee5018fe537e2ee0658f893fb2f1007531e

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b76f611935f15a209d3730c360c56b6df8911a9e81e6a38022efbfb96e433bab
MD5 13f31ad966c9a7bf21830457d40f2b4c
BLAKE2b-256 a0eefdea3f1cff33bc806f7f13e3405d752b0844ec8ba47c634784e49ea14280

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 698e992436bf7f0afc750690c301215a36ff952a6dcd62882ec13b9a1ebf7a39
MD5 3d72f64f24d7f40687b0db9f40c04cb2
BLAKE2b-256 520b5beba595e020ee8402012d31c0dcfd1ad3312ec11212b873bbc8cd390778

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 62ea7007941fb2795fff305ac858f3521ec694c829d5126e8f52a3e92ae75526
MD5 d1b78a762b2eff62b520d1d1180ac40b
BLAKE2b-256 99f639c46fec9dc777d2ffa76abd27dd7a4593a4d05318342b78395d944569de

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1869c42e73e2a8910b479be204fa736418741b63ea2325f9cc583c30f2ded41a
MD5 5bfdc1bb97e95230b2237f8b77fca71e
BLAKE2b-256 292ed3df6680b5c7891138cf20241b8f7b424181109b62e7f00131188244bc38

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bc01a223f6605737bec3202e94dcb1a449b6c76d46082cfc4aa980f2a60fd40e
MD5 c4b6f804ef8d68d412275ae53b693671
BLAKE2b-256 6b3c2360d37c6a909b1687acc252df243472506d9c35d41d9a99a0a4f83e9abd

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 db1664eaff5d7d0f2542dd9c25d272478deaf2c8412e4ad93770e2e2d828e175
MD5 35e64f8761aa14b7ff79390c83448d37
BLAKE2b-256 aef3e92c33b3df8258798c173869bdb2661edeba81ef5859ebdbab128a08172a

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 07141aa6099e39d48637ce72a25b893fc1e433c50b3e837c75d8edf99e0c63e1
MD5 42d3c5b37309cdb8df22fcb11f59af19
BLAKE2b-256 e0e33590f90a99eacc3731fcec8826c3f2a475aabdcce1d50ddb32c0e86bb1c3

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp310-cp310-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 2c99d355f37f2b289e978e761f2f8efeedc2b14f4751d9ff7ee344a9a5ca98d9
MD5 9f4dea802b28083e4d325eb7004f4871
BLAKE2b-256 2db2609571211236bb665104cc9c12e5610259f5be5c4acafcbb1ceed3ad126f

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 3a2e75e41ee3274754d3b2163cc6c82cd95b892a85ab031f57112e09da36455f
MD5 c61f5d148e5776f08ebb00ba067ddb88
BLAKE2b-256 500947b6540d026eafe44d37f01d2e37fbcf31ed02c29edcaa38862c238ec961

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.9.4-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for rapidfuzz-3.9.4-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 005a02688a51c7d2451a2d41c79d737aa326ff54167211b78a383fc2aace2c2c
MD5 32d2c383134725ff2fe58e95792bdb51
BLAKE2b-256 a9156cf22e8adcf2138cc86f2ca7236ea8c9d820a1c339ccaf165a1817606ece

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 aee9fc9e3bb488d040afc590c0a7904597bf4ccd50d1491c3f4a5e7e67e6cd2c
MD5 6e21ce0303ae054dcc71b624f556ea49
BLAKE2b-256 32fe1465e0378656fd7b32cf99934ac89076431bec4971ecb0ede5ade0c58784

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp310-cp310-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp310-cp310-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 fbebf1791a71a2e89f5c12b78abddc018354d5859e305ec3372fdae14f80a826
MD5 fd32b1301817d154e126fbac1e42bf7d
BLAKE2b-256 3249b45563e0b314100829975ab324baf5299a72615dbb6ca4b3732092ba8e85

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp310-cp310-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp310-cp310-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 31a2fc60bb2c7face4140010a7aeeafed18b4f9cdfa495cc644a68a8c60d1ff7
MD5 038e985d78fcfbc3f8835baeb3eed143
BLAKE2b-256 f1aef953db6b234437b06ed568d34811d9f4a0616de0472142812020e711234e

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 10e61bb7bc807968cef09a0e32ce253711a2d450a4dce7841d21d45330ffdb24
MD5 16fa134956d10a3b8133620a329fa11b
BLAKE2b-256 5b8907d8f0a41d173fb10713fc3ce490ac53f70ec72fce1f4bbcaaf956bf792a

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 d070ec5cf96b927c4dc5133c598c7ff6db3b833b363b2919b13417f1002560bc
MD5 60d65ad0792c3fc9ab2bf447239e1392
BLAKE2b-256 b23957ee60dc36029b8498b0d53471b85bf9ebadcacb2b098453d40d64b95d71

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8f37e9e1f17be193c41a31c864ad4cd3ebd2b40780db11cd5c04abf2bcf4201b
MD5 0867b578fa7ab917dd5e503be952f334
BLAKE2b-256 5cfc280134b1533be830fe854db584e6ec4715a774e169ea64641ad13e027a76

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 eb26d412271e5a76cdee1c2d6bf9881310665d3fe43b882d0ed24edfcb891a84
MD5 404e5824f327bdfb8b86a099bd1be907
BLAKE2b-256 3566aeb2ee7561dd23e75b9514b206e3e23062531ea6fb554932cffda9a3ed9d

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 ed01378f605aa1f449bee82cd9c83772883120d6483e90aa6c5a4ce95dc5c3aa
MD5 b6ccb1adeedb4df4c1115b933544f581
BLAKE2b-256 9b4bdf506227eb229fb56cf324ef503d5ba6b0e53bb9e55c93af5d16eb52bdc7

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1424e238bc3f20e1759db1e0afb48a988a9ece183724bef91ea2a291c0b92a95
MD5 a9a550b59276a3807bcd7c25fa436164
BLAKE2b-256 d77a54d25337c4d0c7d94e58f0ce70e12a5e4529eb264b52209a1543c55f8fd3

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 acc5ceca9c1e1663f3e6c23fb89a311f69b7615a40ddd7645e3435bf3082688a
MD5 a8f0aa1b477bf527909202d728ea9a5a
BLAKE2b-256 4f480e936bcc503732b19b143700ae97819c74dea562bc52fd2b63f7759a98c6

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 015b5080b999404fe06ec2cb4f40b0be62f0710c926ab41e82dfbc28e80675b4
MD5 4109286c74929923755e7edd3f9af065
BLAKE2b-256 3957948ea4d84a5c80caa0aebc443a13d094510c068b9a128904da79a1866a9d

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c9b9793c19bdf38656c8eaefbcf4549d798572dadd70581379e666035c9df781
MD5 fc8b1262606d836e6b8ab0c9a745e207
BLAKE2b-256 170127e1f3a4bae94758fc8d123a6d1f60e278ae2a9ef98795fde97505409a7b

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: rapidfuzz-3.9.4-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 856.0 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for rapidfuzz-3.9.4-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 15bc397ee9a3ed1210b629b9f5f1da809244adc51ce620c504138c6e7095b7bd
MD5 7a6bd73a36f6c332300ee7ebc7959dc7
BLAKE2b-256 69c5fd12b536f9ff8818576d63f721ababf2d86cc778fbc8958f9b422c4dadd6

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-3.9.4-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for rapidfuzz-3.9.4-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e81e27e8c32a1e1278a4bb1ce31401bfaa8c2cc697a053b985a6f8d013df83ec
MD5 4491fec4cbffe47be1f066909085dcf4
BLAKE2b-256 8356d70f4742e23b53b2b714cc74986acab126730d95a9c38049dd6acea88041

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.9.4-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for rapidfuzz-3.9.4-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 f75639277304e9b75e6a7b3c07042d2264e16740a11e449645689ed28e9c2124
MD5 9937b02049f2cf7c92ce3afc150d3ca2
BLAKE2b-256 04f47d81db24af0d37fce55690c062cdf77da43e9a38d1e3194308732143283c

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 4c72078b5fdce34ba5753f9299ae304e282420e6455e043ad08e4488ca13a2b0
MD5 88b0b806d5ea43939903192a7bf473b3
BLAKE2b-256 f6cf840030608e2ace6fdba1c1d0108981039fffad2c80b0a476dd8ed0309ee1

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp39-cp39-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp39-cp39-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 e590d5d5443cf56f83a51d3c4867bd1f6be8ef8cfcc44279522bcef3845b2a51
MD5 6ecd0d4e0307922063f2d8ceac300e6f
BLAKE2b-256 9a0c857df354e40865d18d148a836b8ce81c8f2255265af6b3741640c85bff4b

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp39-cp39-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp39-cp39-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 01b42a8728c36011718da409aa86b84984396bf0ca3bfb6e62624f2014f6022c
MD5 66335ead105528ed0618305c05732310
BLAKE2b-256 3504999863a7ff9295296c3b2e4c35014194b7a997f0f30197a108e390232a2a

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp39-cp39-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp39-cp39-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 f46a22506f17c0433e349f2d1dc11907c393d9b3601b91d4e334fa9a439a6a4d
MD5 edbdc24a2ba0afdba4cf135ef3e1b8c7
BLAKE2b-256 eff7d89b63eadb0fbee723a374f6309ba6a16759de04cec430262dc62d222ef6

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 ad04ae301129f0eb5b350a333accd375ce155a0c1cec85ab0ec01f770214e2e4
MD5 3c048552fed2824c0ff54fe50ad0eba9
BLAKE2b-256 a38b2fffefb34c9d88ab016cf638d4b4bd6e126ead15be629335499a0edc644f

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dcb72e5f9762fd469701a7e12e94b924af9004954f8c739f925cb19c00862e38
MD5 e8f134a34aadf7ea6fffd58d0f069441
BLAKE2b-256 badccfa3c8e23ca795223eafc23af9fe75cb1fad39b90acef765f36f22cd5394

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 6022674aa1747d6300f699cd7c54d7dae89bfe1f84556de699c4ac5df0838082
MD5 1588a26987e4dcdef8b8348da195bd1b
BLAKE2b-256 6d96ebb270d807ae6157129fc8acde9ac241fb1b826b7fa7f07870caea31e1c3

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 1bc1a0f29f9119be7a8d3c720f1d2068317ae532e39e4f7f948607c3a6de8396
MD5 0b07cec8fa87c87198549995fb03956c
BLAKE2b-256 9ca782e8b8a5f2f66bf26aedbdff676723d7ad41c3f9814e04f94eb2abe0221e

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7fa714fb96ce9e70c37e64c83b62fe8307030081a0bfae74a76fac7ba0f91715
MD5 1a5dfc546662f99d696e93edde548a8c
BLAKE2b-256 2adaf78e3d8abce297b685b2c4ed989f60c042617a27e49fb51c65f893f44290

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d395d46b80063d3b5d13c0af43d2c2cedf3ab48c6a0c2aeec715aa5455b0c632
MD5 d7ba09c5b9284c526989334a52f9dec4
BLAKE2b-256 cb435ff5f0f3351ab878cee44269c290c193aa20259769fd73dc8b71e1fde3a1

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f5fdc09cf6e9d8eac3ce48a4615b3a3ee332ea84ac9657dbbefef913b13e632f
MD5 4596ba911d68a4e1c985e296cb24575e
BLAKE2b-256 134417a246c4b8f2bd6d117aa2377549d7e4fd33339782c2ab467f70dd780c3e

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9f256c8fb8f3125574c8c0c919ab0a1f75d7cba4d053dda2e762dcc36357969d
MD5 5cdde89477aa06fa482da5538f4f361c
BLAKE2b-256 0e2cd005b62fa082ffb658b192968a6fa0f6292c36269f489f58164c52017313

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-3.9.4-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for rapidfuzz-3.9.4-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 3fe4545f89f8d6c27b6bbbabfe40839624873c08bd6700f63ac36970a179f8f5
MD5 279615bddcbe9d3f3eb2ae642e4a0298
BLAKE2b-256 05286ba4c2359deb7a713b9cc26a21281560530206612565ec2412aa5118762e

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.9.4-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for rapidfuzz-3.9.4-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 4968c8bd1df84b42f382549e6226710ad3476f976389839168db3e68fd373298
MD5 7678743691618d7935566579fb5a16e5
BLAKE2b-256 9e9b9ddf98999b9ea543080e220c58ee1da1b3957db3a00c5904bced52ac706b

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 04dbdfb0f0bfd3f99cf1e9e24fadc6ded2736d7933f32f1151b0f2abb38f9a25
MD5 5c4200146bb0c98da85de098bbe079f8
BLAKE2b-256 2d345b24bc54b6699a7d03f7a49f06f998790a66753c6492fc7c18f29da30a13

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp38-cp38-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp38-cp38-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 d8a52fc50ded60d81117d7647f262c529659fb21d23e14ebfd0b35efa4f1b83d
MD5 b3ed7f0445d4549e3486014a63a9d94f
BLAKE2b-256 0cd0d7527e478c7e8c40b5e4d14f68a400ec73777677d50e741f425081272c5a

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp38-cp38-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp38-cp38-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 3c522f462d9fc504f2ea8d82e44aa580e60566acc754422c829ad75c752fbf8d
MD5 aca9fdc39d61fd4138b5a89fa5cef3c5
BLAKE2b-256 f900413477392953f3d4b6df10b8ef8353f4c075146f8005b9066a0920d9b49d

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp38-cp38-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp38-cp38-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 d2c51955329bfccf99ae26f63d5928bf5be9fcfcd9f458f6847fd4b7e2b8986c
MD5 e76bad7cb17a9a897c3f21fee1466616
BLAKE2b-256 2c684a7a09009245944cd072e5e56e70872735628671e82ae8d5c3307bd3f7e7

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp38-cp38-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp38-cp38-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 1df0f9e9239132a231c86ae4f545ec2b55409fa44470692fcfb36b1bd00157ad
MD5 dfd7e4ace3c3691794529985f816e482
BLAKE2b-256 caf6768c597a985ab890e10e1825440ec4972c55a0b3ec220a80cdf20f72b4ee

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4a6c35f272ec9c430568dc8c1c30cb873f6bc96be2c79795e0bce6db4e0e101d
MD5 3abe6cc74e70b97327381fb0270a1a21
BLAKE2b-256 e7fafb1532a9179fa4307f976dd8caf1b9e6e9a973f2d0e6ec17bc15f53e1d95

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 1950f8597890c0c707cb7e0416c62a1cf03dcdb0384bc0b2dbda7e05efe738ec
MD5 2f90d3d8d5dbcdeb7fddb2d8d92c34fc
BLAKE2b-256 9fc22ce6537f523026cc09786cf9ed25c4ee6245b4ba9a2ef7b525cdb99db73f

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 84fc1ee19fdad05770c897e793836c002344524301501d71ef2e832847425707
MD5 76813898fe9550cf53575b9b1653b6f1
BLAKE2b-256 b5b7b3f0e14ea44bdd2bd8a4b21b64a19a3e6863aea2dc097b97f2a0ef3a43fa

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b712336ad6f2bacdbc9f1452556e8942269ef71f60a9e6883ef1726b52d9228a
MD5 619d7352b225c2d61de82081d770b601
BLAKE2b-256 42e2940412e3c4b8321d909283ab8291d091a45c57e5898c33d6d4e0b3b13d3a

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9e618625ffc4660b26dc8e56225f8b966d5842fa190e70c60db6cd393e25b86e
MD5 945604d723bc2f208575df4705e0650a
BLAKE2b-256 760030f1beed40171daff4d72cef94e843743f4b1c2f175a7b8b713d9cc55aeb

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4d81a78f90269190b568a8353d4ea86015289c36d7e525cd4d43176c88eff429
MD5 ce3d4fd90a34879cc1f9219cf3445d3d
BLAKE2b-256 a582b32798d6c095f02bbcec3dc4215770a390c0d29a1480c6e799316bb5dbb1

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.4-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.4-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 355fc4a268ffa07bab88d9adee173783ec8d20136059e028d2a9135c623c44e6
MD5 95de99e96aab0045cedb72f451d5cc52
BLAKE2b-256 64a621d1d42147a74ae7af12ce7d2b9bf2844c31cd3cca3c330cfb43e9b963eb

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page