Skip to main content

Machine learning based dialogue engine for conversational software.

Project description

Rasa Core
=========

|Join the chat on Gitter| |Build Status| |Coverage Status| |PyPI
version|

What do Rasa Core & NLU do? 🤔
-----------------------------

`Read About the Rasa Stack <http://rasa.ai/products/rasa-stack/>`__

I'd like to read the detailed docs 🤓
------------------------------------

`Read The Docs <https://core.rasa.ai>`__

I'm ready to install Rasa Core! 🚀
---------------------------------

`Installation <https://core.rasa.ai/installation.html>`__

I have a question ❓
-------------------

`Gitter channel <https://gitter.im/RasaHQ/rasa_core>`__

I would like to contribute 🤗
----------------------------

`How to contribute <#how-to-contribute>`__

Introduction
------------

Rasa Core is a framework for building conversational software, which
includes: - chatbots on Messenger - Slack bots - Alexa Skills - Google
Home Actions

etc.

Rasa Core's primary purpose is to help you build contextual, layered
conversations with lots of back-and-forth. To have a real conversation,
you need to have some memory and build on things that were said earlier.
Rasa Core lets you do that in a scalable way.

There's a lot more background information in this `blog
post <https://medium.com/rasa-blog/a-new-approach-to-conversational-software-2e64a5d05f2a>`__

Where to get help
-----------------

There is extensive documentation:

- `master <https://core.rasa.ai/master/>`__  (if you install from
**github**) or
- `stable <https://core.rasa.ai/>`__   (if you install from **pypi**)

Please use `gitter <https://gitter.im/RasaHQ/rasa_core>`__ for quick
answers to questions.

README Contents:
^^^^^^^^^^^^^^^^

- `How to contribute <#how-to-contribute>`__
- `Development Internals <#development-internals>`__
- `License <#license>`__

How to contribute
~~~~~~~~~~~~~~~~~

We are very happy to receive and merge your contributions. There is some
more information about the style of the code and docs in the
`documentation <https://rasahq.github.io/rasa_nlu/contribute.html>`__.

In general the process is rather simple: 1. create an issue describing
the feature you want to work on (or have a look at issues with the label
`help
wanted <https://github.com/RasaHQ/rasa_core/issues?q=is%3Aissue+is%3Aopen+label%3A%22help+wanted%22>`__)
2. write your code, tests and documentation 3. create a pull request
describing your changes

You pull request will be reviewed by a maintainer, who might get back to
you about any necessary changes or questions. You will also be asked to
signa `Contributor License
Agreement <https://cla-assistant.io/RasaHQ/rasa_core>`__

Development Internals
---------------------

Running and changing the documentation
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

To build & edit the docs, first install all necessary dependencies:

::

brew install sphinx
pip install -r dev-requirements.txt

After the installation has finished, you can run and view the
documentation locally using

::

make livedocs

Visit the local version of the docs at http://localhost:8000 in your
browser. You can now change the docs locally and the web page will
automatically reload and apply your changes.

License
-------

Licensed under the Apache License, Version 2.0. Copyright 2017 Rasa
Technologies GmbH. `Copy of the license <LICENSE.txt>`__.

As a reference, the following contains a listing of the licenses of the
different dependencies as of this writing. Licenses of the dependencies:

+--------------------+----------------------+
| required package | License |
+====================+======================+
| apscheduler | MIT |
+--------------------+----------------------+
| fakeredis | BSD |
+--------------------+----------------------+
| graphviz         | MIT |
+--------------------+----------------------+
| typing | PSF |
+--------------------+----------------------+
| future | MIT |
+--------------------+----------------------+
| six | MIT |
+--------------------+----------------------+
| h5py | BSD |
+--------------------+----------------------+
| jsonpickle | BSD |
+--------------------+----------------------+
| keras | MIT |
+--------------------+----------------------+
| numpy | BSD |
+--------------------+----------------------+
| pandoc | MIT |
+--------------------+----------------------+
| redis | MIT |
+--------------------+----------------------+
| tensorflow | Apache Licence 2.0 |
+--------------------+----------------------+
| networkx | BSD |
+--------------------+----------------------+
| pymessenger | MIT |
+--------------------+----------------------+
| tqdm | MIT |
+--------------------+----------------------+
| ConfigArgParse | MIT |
+--------------------+----------------------+

.. |Join the chat on Gitter| image:: https://badges.gitter.im/Join%20Chat.svg
:target: https://gitter.im/RasaHQ/rasa_core?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge
.. |Build Status| image:: https://travis-ci.org/RasaHQ/rasa_core.svg?branch=master
:target: https://travis-ci.org/RasaHQ/rasa_core
.. |Coverage Status| image:: https://coveralls.io/repos/github/RasaHQ/rasa_core/badge.svg?branch=master
:target: https://coveralls.io/github/RasaHQ/rasa_core?branch=master
.. |PyPI version| image:: https://img.shields.io/pypi/v/rasa_core.svg
:target: https://pypi.python.org/pypi/rasa-core

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rasa_core-0.7.7.tar.gz (61.6 kB view details)

Uploaded Source

File details

Details for the file rasa_core-0.7.7.tar.gz.

File metadata

  • Download URL: rasa_core-0.7.7.tar.gz
  • Upload date:
  • Size: 61.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for rasa_core-0.7.7.tar.gz
Algorithm Hash digest
SHA256 a5dec53e606fc4a293cb26ba0d40a9d41941b5872da18a493905d80f9933eaf9
MD5 689abb012ba4635ac7dc2d3ea03131f0
BLAKE2b-256 89c92694df95abb4221b4e0c8fab5461eb3c899efc9e3d1a5a63e8a77d64b802

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page