Skip to main content

Regularized Optimal Transport

Project description

RegOT-Python

RegOT is a collection of state-of-the-art solvers for regularized optimal transport (OT) problems, implemented in efficient C++ code. This repository is the Python interface to RegOT.

📝 Formulation

RegOT mainly solves two types of regularized OT problems: the entropic-regularized OT (EROT) and the quadratically regularized OT (QROT).

EROT, also known as the Sinkhorn-type OT, considers the following optimization problem:

\begin{align*}
\min_{T\in\mathbb{R}^{n\times m}}\quad & \langle T,M\rangle-\eta h(T),\\
\text{subject to}\quad & T\mathbf{1}_{m}=a,T^{T}\mathbf{1}_{n}=b,T\ge0,
\end{align*}

where $a\in\mathbb{R}^n$ and $b\in\mathbb{R}^m$ are two given probability vectors with $a_i>0$, $b_j>0$, $\sum_{i=1}^n a_i=\sum_{j=1}^m b_j=1$, and $M\in\mathbb{R}^{n\times m}$ is a given cost matrix. The function $h(T)=\sum_{i=1}^{n}\sum_{j=1}^{m}T_{ij}(1-\log T_{ij})$ is the entropy term, and $\eta>0$ is a regularization parameter.

QROT, also known as the Euclidean-regularized OT, is concerned with the problem

\begin{align*}
\min_{T\in\mathbb{R}^{n\times m}}\quad & \langle T,M\rangle+\gamma \Vert T \Vert_F^2,\\
\text{subject to}\quad & T\mathbf{1}_{m}=a,T^{T}\mathbf{1}_{n}=b,T\ge0.
\end{align*}

🔧 Solvers

Currently RegOT contains the following solvers for EROT:

  • sinkhorn_bcd: the block coordinate descent (BCD) algorithm, equivalent to the well-known Sinkhorn algorithm.
  • sinkhorn_apdagd: the adaptive primal-dual accelerate gradient descent (APDAGD) algorithm (link to paper).
  • sinkhorn_lbfgs_dual: the L-BFGS algorithm applied to the dual problem of EROT.
  • sinkhorn_newton: Newton's method applied to the dual problem of EROT.
  • sinkhorn_ssns: the safe and sparse Newton method for Sinkhorn-type OT (SSNS, paper to appear soon).

The following solvers are available for the QROT problem:

  • qrot_bcd: the BCD algorithm.
  • qrot_gd: the line search gradient descent algorithm applied to the dual problem of QROT.
  • qrot_apdagd: the APDAGD algorithm (link to paper).
  • qrot_pdaam: the primal-dual accelerated alternating minimization (PDAAM) algorithm (link to paper).
  • qrot_lbfgs_dual: the L-BFGS algorithm applied to the dual problem of QROT.
  • qrot_lbfgs_semi_dual: the L-BFGS algorithm applied to the semi-dual problem of QROT (link to paper).
  • qrot_assn: the adaptive semi-smooth Newton (ASSN) method applied to the dual problem of QROT (link to paper).
  • qrot_grssn: the globalized and regularized semi-smooth Newton (GRSSN) method applied to the dual problem of QROT (link to paper).

💽 Installation

Using pip

You can simply install RegOT using the pip command:

pip install regot

Building from source

A C++ compiler is needed to build RegOT from source. Enter the source directory and run

pip install . -r requirements.txt

📗 Example

The code below shows a minimal example computing EROT given $a$, $b$, $M$, and $\eta$.

import numpy as np
from scipy.stats import expon, norm
import regot
import matplotlib.pyplot as plt

# OT between two discretized distributions
# One is exponential, the other is mixture normal
def example(n=100, m=80):
    x1 = np.linspace(0.0, 5.0, num=n)
    x2 = np.linspace(0.0, 5.0, num=m)
    distr1 = expon(scale=1.0)
    distr2 = norm(loc=1.0, scale=0.2)
    distr3 = norm(loc=3.0, scale=0.5)
    a = distr1.pdf(x1)
    a = a / np.sum(a)
    b = 0.2 * distr2.pdf(x2) + 0.8 * distr3.pdf(x2)
    b = b / np.sum(b)
    M = np.square(x1.reshape(n, 1) - x2.reshape(1, m))
    return M, a, b

# Source and target distribution vectors `a` and `b`
# Cost matrix `M`
# Regularization parameter `reg`
np.random.seed(123)
M, a, b = example(n=100, m=80)
reg = 0.1

# Algorithm: block coordinate descent (the Sinkhorn algorithm)
res1 = regot.sinkhorn_bcd(
    M, a, b, reg, tol=1e-6, max_iter=1000, verbose=1)

# Algorithm: SSNS
reg = 0.01
res2 = regot.sinkhorn_ssns(
    M, a, b, reg, tol=1e-6, max_iter=1000, verbose=0)

We can retrieve the computed transport plans and visualize them:

def vis_plan(T, title=""):
    fig = plt.figure(figsize=(8, 8))
    plt.imshow(T, interpolation="nearest")
    plt.title(title, fontsize=20)
    plt.show()

vis_plan(res1.plan, title="reg=0.1")
vis_plan(res2.plan, title="reg=0.01")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

regot-0.0.1.tar.gz (33.2 kB view details)

Uploaded Source

Built Distributions

regot-0.0.1-cp313-cp313-win_amd64.whl (279.0 kB view details)

Uploaded CPython 3.13 Windows x86-64

regot-0.0.1-cp313-cp313-win32.whl (246.4 kB view details)

Uploaded CPython 3.13 Windows x86

regot-0.0.1-cp313-cp313-musllinux_1_2_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ x86-64

regot-0.0.1-cp313-cp313-musllinux_1_2_i686.whl (1.7 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ i686

regot-0.0.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (552.5 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

regot-0.0.1-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl (582.6 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ i686

regot-0.0.1-cp313-cp313-macosx_10_13_x86_64.whl (411.4 kB view details)

Uploaded CPython 3.13 macOS 10.13+ x86-64

regot-0.0.1-cp312-cp312-win_amd64.whl (279.0 kB view details)

Uploaded CPython 3.12 Windows x86-64

regot-0.0.1-cp312-cp312-win32.whl (246.4 kB view details)

Uploaded CPython 3.12 Windows x86

regot-0.0.1-cp312-cp312-musllinux_1_2_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

regot-0.0.1-cp312-cp312-musllinux_1_2_i686.whl (1.7 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ i686

regot-0.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (552.1 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

regot-0.0.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (582.5 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

regot-0.0.1-cp312-cp312-macosx_10_13_x86_64.whl (411.3 kB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

regot-0.0.1-cp311-cp311-win_amd64.whl (278.6 kB view details)

Uploaded CPython 3.11 Windows x86-64

regot-0.0.1-cp311-cp311-win32.whl (246.1 kB view details)

Uploaded CPython 3.11 Windows x86

regot-0.0.1-cp311-cp311-musllinux_1_2_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

regot-0.0.1-cp311-cp311-musllinux_1_2_i686.whl (1.7 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ i686

regot-0.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (552.2 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

regot-0.0.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (581.6 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

regot-0.0.1-cp311-cp311-macosx_10_9_x86_64.whl (411.5 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

regot-0.0.1-cp310-cp310-win_amd64.whl (277.8 kB view details)

Uploaded CPython 3.10 Windows x86-64

regot-0.0.1-cp310-cp310-win32.whl (245.4 kB view details)

Uploaded CPython 3.10 Windows x86

regot-0.0.1-cp310-cp310-musllinux_1_2_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

regot-0.0.1-cp310-cp310-musllinux_1_2_i686.whl (1.7 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ i686

regot-0.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (551.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

regot-0.0.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (580.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

regot-0.0.1-cp310-cp310-macosx_10_9_x86_64.whl (410.5 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

File details

Details for the file regot-0.0.1.tar.gz.

File metadata

  • Download URL: regot-0.0.1.tar.gz
  • Upload date:
  • Size: 33.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for regot-0.0.1.tar.gz
Algorithm Hash digest
SHA256 2ff5731a609b8083f91102429331c97e5b0ae77cd9bdb209154ea7ef5aabb246
MD5 8c1083c3af62b459c5e9c9eccd7de7cc
BLAKE2b-256 4cfd6bd58ace60ac7c441a086a26fa120cb212e5d2f8028f6a6a341168703024

See more details on using hashes here.

File details

Details for the file regot-0.0.1-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: regot-0.0.1-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 279.0 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for regot-0.0.1-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 9f066fb1d32783f545de5b47c18a9a3ef15e770c8f0b4a8be59eab52d02bdaef
MD5 747ae5e25baa9f3979858e47da37ea6a
BLAKE2b-256 543a7999ef21ca999aaadba1b0e209f4345f3c557006c3755f206923db998935

See more details on using hashes here.

File details

Details for the file regot-0.0.1-cp313-cp313-win32.whl.

File metadata

  • Download URL: regot-0.0.1-cp313-cp313-win32.whl
  • Upload date:
  • Size: 246.4 kB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for regot-0.0.1-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 8bcb09f06989e30698f2d247198bf390fcca3be5bc5a9c25162ece7a6d9e8fc4
MD5 62c681f504467790cff004fceb34da3d
BLAKE2b-256 57e3a0cff6a00b9dfcd0d580d6f7f439641ddbf3835e8add7a79e072b82a10c1

See more details on using hashes here.

File details

Details for the file regot-0.0.1-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for regot-0.0.1-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 de9fe085c233bb2b11c3ebc75f7938f80472089453cb81871bbe6047b838b00a
MD5 442e5aa90c89673d08f4b2635e6582bf
BLAKE2b-256 2963cd8ade0325f31c97917d37ebbda7e4cb1d755bd834230440ff16de8c1eba

See more details on using hashes here.

File details

Details for the file regot-0.0.1-cp313-cp313-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for regot-0.0.1-cp313-cp313-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 1df49a25dc6abeb9b9f59928d2ec8351d45bb6f1705bf7fb30bbcf132435bd59
MD5 77a6029caef5c541694d8649086d0f7b
BLAKE2b-256 623c454de2b0ac3eec4052187d2b5281d565cf9df448e412a591180a7b966c3d

See more details on using hashes here.

File details

Details for the file regot-0.0.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for regot-0.0.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d15534fff875a115f7afe461681a752c020d0d0af339a7c6263eab4a2d1d7304
MD5 5423999964dc77851889754ae882e42a
BLAKE2b-256 503218d2547384dab2d43e5d3fcb614298ca40502a21ded7c06ead0e0abf8f6f

See more details on using hashes here.

File details

Details for the file regot-0.0.1-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for regot-0.0.1-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a4bd999af620c6aa83f1414d66302eb9eddc470b0a7e296530dd69e5a3847302
MD5 46adeeca187f3bcc84147ad581481534
BLAKE2b-256 1937bf5fe5255a68199c067383261c209d6b74f91b42c44e5aee1e8deb7318b2

See more details on using hashes here.

File details

Details for the file regot-0.0.1-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for regot-0.0.1-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 d87b877e0ffadca378106e5ad4e184241af580c3ca631873636c9e04cfb3d92a
MD5 01965d7ffc1299fd70019593e803346e
BLAKE2b-256 821c97e220108740dfb365ec1edee1d611d07fd70b6585187f72fd8c75659870

See more details on using hashes here.

File details

Details for the file regot-0.0.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: regot-0.0.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 279.0 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for regot-0.0.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 f05c30dd1e0a8afaf43b28bff0198b4362d0e943d4353cddc2f24f91de3c839c
MD5 a3be38692cf7fcda109b37fb19c15c82
BLAKE2b-256 9d46030fc33fcdac3229d46b296776c4adb577c34d51f51ec7f164e75474e488

See more details on using hashes here.

File details

Details for the file regot-0.0.1-cp312-cp312-win32.whl.

File metadata

  • Download URL: regot-0.0.1-cp312-cp312-win32.whl
  • Upload date:
  • Size: 246.4 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for regot-0.0.1-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 3e8cbc2d7a5d27245b85dcd81b61a87a7dd100f850845b70dd88ea106a55cc29
MD5 8e01a5f152c23bf0f133568387ad6cd9
BLAKE2b-256 16a2c572f627f6b8711e60a01744a84289dd712340c56d71911e954cfc1815a9

See more details on using hashes here.

File details

Details for the file regot-0.0.1-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for regot-0.0.1-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 211e45e85800ec7c83bfb5f89b8f271ec66b926e58333e14a5051d47e24442f2
MD5 97f1bd26b94365ff7129459d7248ec7b
BLAKE2b-256 f78c681f272e82bfb2e1d4449c2e4ce1cdfa2eda5450b85c4ab1f28eeef64d55

See more details on using hashes here.

File details

Details for the file regot-0.0.1-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for regot-0.0.1-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 79fc08cef7955183a9b92a37d5fa7aad6452389bc3be5ceef77ff155de14a438
MD5 61f0dc34da1897abaa47b813606402ac
BLAKE2b-256 d04c604d0f0c162a322cfebdd860639b43619290b67f15d37d627a9ce9532ea9

See more details on using hashes here.

File details

Details for the file regot-0.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for regot-0.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 51c491a8acdffb6a35d895ca51afaf5fe6e95a727c8c5e1322f15b59c21f7027
MD5 076f24ed473ee8f253959fe7ebc04ed8
BLAKE2b-256 2fd66a9637d8ce4b29e5b08ed3b93b0dc31233c6ce9fcf195d3942448ef71829

See more details on using hashes here.

File details

Details for the file regot-0.0.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for regot-0.0.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ac29d178e1c159790f8e3f90eb067b7c03f7922ae39b01427c83e8561c8a47cc
MD5 685370a1bf86f1273b269ed406362c99
BLAKE2b-256 dd5d520e3adc94cccff793c79ec1926976016926dfd9a0622fe357073208c9ad

See more details on using hashes here.

File details

Details for the file regot-0.0.1-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for regot-0.0.1-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 83ca05e0c212d5c7e9a84ef748e049b0a6487719caa5c9fcce8c0db7fc6e7de9
MD5 16d96b8b664ef1b47e6f4fe9a2e0b902
BLAKE2b-256 f9b149c4cf5e90e9c3b647c371ad5f436596a3d6e0f870431c91546ab47f550f

See more details on using hashes here.

File details

Details for the file regot-0.0.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: regot-0.0.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 278.6 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for regot-0.0.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 b2167e7275ec3126a97ba66767f13ffff64b1a8825a1c48e1c7cb33989c9eb23
MD5 95e02dd7b986c42e08bf22ad4e5326d6
BLAKE2b-256 c55f7e919f8b28a363bae35e634e5c6930542119687e6111d4aced22c015fb14

See more details on using hashes here.

File details

Details for the file regot-0.0.1-cp311-cp311-win32.whl.

File metadata

  • Download URL: regot-0.0.1-cp311-cp311-win32.whl
  • Upload date:
  • Size: 246.1 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for regot-0.0.1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 e4a978d099c49f121a16ff5498296eb22bbb8971e50144cbeb922ab84deb7f5d
MD5 20e65f09a74bd33b997eded8adc5533a
BLAKE2b-256 845e7fc1a47403ea6047451f84712546b4b1e095527baf5735caf02d48629e3d

See more details on using hashes here.

File details

Details for the file regot-0.0.1-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for regot-0.0.1-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 5914e7a7a899b5af4f45cf17633ff3e0114ad97bc6f63c013b1e433e53227611
MD5 57f6c3c1dd04905132378cf95e3e9bae
BLAKE2b-256 3601d067caaf8b3e8ad1a44bee517d61b6ae9a41c2eca948d326d3ba07af9282

See more details on using hashes here.

File details

Details for the file regot-0.0.1-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for regot-0.0.1-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 2c4598a49bbcf1f074eb533a74e71c3da7c642d5853b97ae9e688e4728dedbbf
MD5 ec7ad83cd068767145d2632fff6382a2
BLAKE2b-256 70719b5766712cb5f3483554a1df56e91ae3e89fd051196c78ffe29df5fb5477

See more details on using hashes here.

File details

Details for the file regot-0.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for regot-0.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4ccf1357901853893cfe089efe32341ecea0c715980de4cedb94243fb02906e8
MD5 dc57ccaacdcadab5fee3f416ef72f44d
BLAKE2b-256 83697a5b1503bef5852465bc4c1b1accb0fb34f4457ea2157851e26728a34399

See more details on using hashes here.

File details

Details for the file regot-0.0.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for regot-0.0.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4628bedade1977bf46575f091eb81e3bde44e448f51400ee44d85fbae715f034
MD5 dcd8eeb9b7ab952643f85edd2b84898c
BLAKE2b-256 7f964f77816bd68697f089990e2d1cabb07ef2124c722b08def20760dcb3aa0c

See more details on using hashes here.

File details

Details for the file regot-0.0.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for regot-0.0.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4746e9f57d00481a39302bd944801f08d973b10cb8435d9c2f3636717bf528c7
MD5 7a35f52e0d90e28ba21884bcf61b3c8b
BLAKE2b-256 9642cb4b03298214a15f37a5bc22959f92026bcfba4cf97ad1eb748886b46026

See more details on using hashes here.

File details

Details for the file regot-0.0.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: regot-0.0.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 277.8 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for regot-0.0.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 65bad770325e2743d2ed447406ac6e4dc13071ac25633617f8e51ac70e2edf32
MD5 3b7a7ba931f10fb9ed4fdc84e4f0114f
BLAKE2b-256 560c75f60daf197782a1d6de42f8e9443eca159f66796691ae93efe27aad8044

See more details on using hashes here.

File details

Details for the file regot-0.0.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: regot-0.0.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 245.4 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for regot-0.0.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 3cd7e3aa9d54e385cff180a2087d109d6b2a1c801d3be997ab53f28642ecb70f
MD5 85a47fb889b845405f0144e99fd7ae72
BLAKE2b-256 af0487c7617fa9e0d4071f2d10f7791b561ab1ff2e6571ba85f7df7cbda1048b

See more details on using hashes here.

File details

Details for the file regot-0.0.1-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for regot-0.0.1-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 e3127ca4b8d38c15644de98a800024a9e856087489c3ec9b6a4dc59942d84ce5
MD5 16c82247a0a9e16c55d62ebc19b29f4f
BLAKE2b-256 5e432eae73ec508aae6f0e5dae0cef71c7185053b8f3edde7e1c1307361a62d9

See more details on using hashes here.

File details

Details for the file regot-0.0.1-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for regot-0.0.1-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 fcea4265b1d0b400f3677ea15c22a592c24d4f5ed22e73be406cb72737ff6732
MD5 8d6721aa78b5220dcc9754bf62a4c754
BLAKE2b-256 fd07f8b3cede539e83cb5827ae45ea99834d133ceb04cbc2234aa9c47f79d32c

See more details on using hashes here.

File details

Details for the file regot-0.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for regot-0.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 455d86c6de6b06cedc791623282d0a584a758f2db8e283a4ee81c04920fc96b7
MD5 dc9c262c0d9a77f0a849686bad68aa91
BLAKE2b-256 6d2ef577592e11925e39c6f93a1cf5993a4d3c6f2e0dadf716192e600cbdfd84

See more details on using hashes here.

File details

Details for the file regot-0.0.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for regot-0.0.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f241d6b2bcec5b1ac3931887386555b5d1062adead90b3c441d03848324716ab
MD5 682dee223949ee2eb98b936c7e60f503
BLAKE2b-256 85f45057af2465b3c7ac2a8a1fed0f5b1d755a330e3d145888a50b47dd3b0109

See more details on using hashes here.

File details

Details for the file regot-0.0.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for regot-0.0.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7029b96d6264a2401d3ba32a80a8cda30042d1ef22d0cfb765d730f478a9cb81
MD5 5635ae53a3fc5c069b9ec4bc5dbdbb76
BLAKE2b-256 8d16c2d323ee5868a1e486aaa53d52313817a521b3c4f691234bfd88b118ff8b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page