Skip to main content

Auto-Reloadable Modules and Namespaces

Project description

relmod - auto-reloading module development library

Place your Python cell code in a directory and start using it immediately.

  • Use directories as auto-loading namespaces.
  • Use file names as auto-deep-reloading modules.
  • Run unittest cases easily.

Running the following:

import relmod

with open('./myfunc.py', 'w') as f:
    f.write("""
def add(x, y):
    return x + y
""")  # create a file with a function

lib = relmod.at('.')  # create a local namespace module

print(lib.myfunc.add(3, 4))  # call the function from myfunc.py

import unittest
class TestMyFunc(unittest.TestCase):
    def test_add(self):
        self.assertEqual(lib.myfunc.add(3, 4), 7)  # create a test

relmod.runtest(TestMyFunc)  # run the test

produces this output:

7
test_add (__main__.TestMyFunc) ... ok

----------------------------------------------------------------------
Ran 1 test in 0.003s

OK

Motivation

The relmod library allows for placing helper modules and functions in a directory and making them quickly available, with reloading if needed. This helps with converting existing notebook cells into re-usable library code.

Tests for these library functions can be developed easily along the way.

When you're finished, you no longer need relmod. You have a readily usable Python library. Packaging is up to you.

Examples

Use a file directly:

myfunc = relmod.at('./myfunc.py')

Relative directories can be given:

lib = relmod.at('.')
parent = lib['../']  # go up a directory, using []

which is the same as

parent = relmod.up('.')

Cell Mode

The .install function will use the current working directory if __file__ is not defined. This is useful in a cell-mode environment.

here = relmod.install(globals())

Using .install allows for relative imports within __main__:

from . import myfunc
print(myfunc.add(3, 4))

Use the parent directory of __file__ as a namespace:

here = relmod.up(__file__)

Top-level Modules

You can register a directory or file as a top-level module and then import it.

relmod.toplevel('myfunc', './myfunc.py')
import myfunc
myfunc.add(3, 4)

Testing

Run a single test case method:

relmod.runtest(TestMyFunc, 'test_add')

Find and run all unittest.TestCase classes in a module:

relmod.testmod(mod)

Only run a single class in a test file and exit:

@relmod.testonly()
class Test(unittest.TestCase):
    ...

Fake fimport, Fake ffrom

The fimport and ffrom objects can accept filesystem paths or a Python-like relative import with leading dots.

To use fake import, fake from:

relmod.install(globals())  # injects fimport, ffrom

fimport('./myfunc.py', as_='myfunc')
myfunc.add(3, 4)

Import a nested name directly:

fimport('.myfunc.add')
print(add(3,4))

which is the same as

ffrom('.myfunc', import_='add')

How it works

The .at, .up, .install functions return FakeModuleType objects wrapped in a ModuleProxy object that triggers reloading when accessing its attributes, if needed. Namespace and __init__.py fake modules perform auto-reloading on attribute access as well.

The files and directories accessed via relmod are not found in sys.modules. These "fake modules" are handled separately and behave as regular Python modules, with enhancements. Relative imports within a fake module perform dependency tracking, allowing for lazy deep-reloading of modules.

Install

pip3 install relmod

Zen

  • Beautiful is better than ugly.

    • relmod is a useful alternative to importlib.reload and sys.path hacking.
  • Explicit is better than implicit.

    • If you want a file, request it.
  • Namespaces are one honking great idea -- let's do more of those!

    • relmod turns the filesystem into a namespace
  • There should be one-- and preferably only one --obvious way to do it.

    • relmod is the way ;-)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

relmod-0.4.0.zip (27.0 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page