Skip to main content

High-performance MinHash implementation in Rust with Python bindings for efficient similarity estimation and deduplication of large datasets

Project description

Rensa: A novel high-performance MinHash Implementation in Rust

Introduction

Rensa (Swedish for "clean") is a high-performance MinHash implementation written in Rust with Python bindings. It's designed for efficient similarity estimation and deduplication of large datasets.

Rensa implements a variant of the MinHash algorithm that combines ideas from traditional MinHash and the C-MinHash algorithm proposed in the paper C-MinHash: Rigorously Reducing K Permutations to Two to create a novel MinHash implementation that I call R-MinHash.

Rensa is particularly useful in scenarios where you need to:

  • Quickly estimate the similarity between large sets of data
  • Deduplicate large datasets
  • Perform locality-sensitive hashing (LSH) for approximate nearest neighbor search

Use cases include:

  • Content deduplication in large document collections
  • Identifying similar items in recommendation systems
  • Clustering of high-dimensional data
  • Near-duplicate detection in web crawling

Technical Implementation

Key aspects of Rensa's implementation include:

  1. Efficient permutation generation: Instead of storing full permutations or using k independent hash functions, Rensa uses a pair of random numbers (a, b) to generate permutations on-the-fly. This approach significantly reduces memory usage while maintaining the algorithm's effectiveness.

  2. Simplified C-MinHash: While inspired by C-MinHash, Rensa's implementation differs in a few key ways:

    • It does not apply an initial independent permutation (σ) to the input data.
    • Instead of using circulant permutations (π_k) for each hash value, Rensa uses the same pair of random numbers (a, b) for all permutations.
  3. Trade-off between memory and variance reduction: Rensa's approach trades some of the variance reduction benefits of full C-MinHash for improved memory efficiency and simplicity. While it may not achieve the same level of variance reduction as C-MinHash, it still offers better performance than traditional MinHash in many scenarios.

  4. Fast hash function: Rensa uses the rustc-hash crate which implements the FxHash algorithm, a fast, non-cryptographic hash function, to further optimize performance.

  5. Vectorized operations: The R-MinHash computation is optimized using vector operations, allowing for efficient parallel processing of multiple hash values.

  6. Memory-efficient data structures: The implementation uses compact data structures to minimize memory usage while maintaining fast access times.

  7. Efficient LSH implementation: The LSH index uses a band-based approach with optimized data structures for fast insertion and query operations.

These design choices result in a MinHash implementation that is fast, memory-efficient, and suitable for large-scale similarity estimation and deduplication tasks. While Rensa may not provide the same theoretical guarantees as full C-MinHash, our benchmarks show that it offers significant performance improvements over traditional MinHash implementations like datasketch.

Installation

You can install Rensa using pip. It's available in all platforms:

pip install rensa

Usage Example

Here's an example of how to use Rensa to deduplicate a dataset:

from datasets import load_dataset
from rensa import RMinHash
from tqdm import tqdm

def rensa_minhash(text, num_perm=128):
    m = RMinHash(num_perm=num_perm, seed=42)
    m.update(text.split())
    return m

def deduplicate_dataset(dataset, num_perm=128):
    unique_hashes = set()
    deduplicated_indices = []
    
    for idx, example in tqdm(enumerate(dataset), total=len(dataset), desc="Deduplicating"):
        minhash = rensa_minhash(example["sql"], num_perm)
        hash_tuple = tuple(minhash.digest())
        
        if hash_tuple not in unique_hashes:
            unique_hashes.add(hash_tuple)
            deduplicated_indices.append(idx)
    
    return deduplicated_indices

def main():
    print("Loading dataset...")
    sql_dataset = load_dataset("gretelai/synthetic_text_to_sql", split="train")
    
    print("Deduplicating dataset...")
    deduplicated_indices = deduplicate_dataset(sql_dataset)
    
    deduplicated_dataset = sql_dataset.select(deduplicated_indices)
    
    print("\nDeduplication Results:")
    print(f"Original dataset size: {len(sql_dataset)}")
    print(f"Deduplicated dataset size: {len(deduplicated_dataset)}")
    print(f"Rows removed: {len(sql_dataset) - len(deduplicated_dataset)}")
    
if __name__ == "__main__":
    main()

Benchmark Results

Graph with benchmark results that demonstrate that Rensa is 12x faster

Speed

Rensa significantly outperforms datasketch in terms of speed. The table below provides a detailed comparison of execution times for different numbers of permutations:

Permutations Datasketch Time (s) Rensa Time (s) Speedup
64 34.48 4.89 7.05x faster
128 49.62 5.21 9.52x faster
256 84.76 6.39 13.26x faster

Memory Usage

Memory usage is comparable between Rensa and datasketch, with Rensa showing slightly better performance for smaller numbers of permutations. The table below provides the details:

Permutations Datasketch Memory (MB) Rensa Memory (MB) Difference (MB)
64 265.75 242.36 23.39 less
128 487.02 472.97 14.05 less
256 811.64 774.49 37.15 less

Accuracy

Despite the simplified implementation, Rensa achieves the same deduplication results as datasketch. The Jaccard similarity between the deduplicated sets produced by both libraries is 1.0000, indicating identical results.

Running the Benchmarks

To run the benchmarks yourself, follow these steps:

  1. Clone the repository:

    git clone https://github.com/beowolx/rensa.git
    cd rensa
    
  2. Create a virtual environment:

    python3 -m venv venv
    source venv/bin/activate
    
  3. Install the required dependencies:

    pip install -r requirements.txt
    
  4. Run the simple benchmark:

    python benchmarks/simple_benchmark.py
    
  5. Run the advanced benchmark:

    python benchmarks/advanced_benchmark.py
    

The simple_benchmark.py script provides a basic comparison of deduplication performance between Rensa and datasketch. The advanced_benchmark.py script offers a more comprehensive analysis, including multiple runs with different numbers of permutations, memory usage tracking, and detailed profiling information.

Limitations and Future Work

While Rensa offers significant performance improvements, it has some limitations compared to datasketch:

  1. Feature set: Rensa currently implements only the core MinHash and LSH functionality. It doesn't include some of the advanced features found in datasketch.

  2. Customization: datasketch offers more options for customizing the hash functions and other parameters, while Rensa currently has a more fixed implementation.

  3. Theoretical guarantees: Due to the simplified C-MinHash implementation, Rensa may not provide the same level of variance reduction as the full C-MinHash algorithm in all scenarios.

Future work on Rensa may include:

  • Adding more advanced features and customization options
  • Further optimizing performance for specific use cases and data types

Despite these limitations, Rensa's performance benefits make it an excellent choice for applications where speed and efficiency are critical, especially when working with large datasets.

Contributing

Contributions to Rensa are welcome! Please feel free to submit pull requests, report bugs, or suggest features through the GitHub issue tracker.

License

Rensa is released under the MIT License. See the LICENSE file for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rensa-0.1.6.tar.gz (60.9 kB view details)

Uploaded Source

Built Distributions

rensa-0.1.6-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl (452.6 kB view details)

Uploaded PyPy musllinux: musl 1.2+ x86-64

rensa-0.1.6-pp310-pypy310_pp73-musllinux_1_2_i686.whl (470.3 kB view details)

Uploaded PyPy musllinux: musl 1.2+ i686

rensa-0.1.6-pp310-pypy310_pp73-musllinux_1_2_armv7l.whl (546.9 kB view details)

Uploaded PyPy musllinux: musl 1.2+ ARMv7l

rensa-0.1.6-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl (466.0 kB view details)

Uploaded PyPy musllinux: musl 1.2+ ARM64

rensa-0.1.6-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (281.0 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rensa-0.1.6-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (338.1 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ s390x

rensa-0.1.6-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (320.9 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

rensa-0.1.6-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (284.8 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

rensa-0.1.6-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (286.9 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rensa-0.1.6-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl (292.4 kB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

rensa-0.1.6-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl (452.7 kB view details)

Uploaded PyPy musllinux: musl 1.2+ x86-64

rensa-0.1.6-pp39-pypy39_pp73-musllinux_1_2_i686.whl (470.6 kB view details)

Uploaded PyPy musllinux: musl 1.2+ i686

rensa-0.1.6-pp39-pypy39_pp73-musllinux_1_2_armv7l.whl (546.4 kB view details)

Uploaded PyPy musllinux: musl 1.2+ ARMv7l

rensa-0.1.6-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl (466.3 kB view details)

Uploaded PyPy musllinux: musl 1.2+ ARM64

rensa-0.1.6-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (281.2 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rensa-0.1.6-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (338.4 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ s390x

rensa-0.1.6-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (321.6 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

rensa-0.1.6-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (284.3 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

rensa-0.1.6-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (287.1 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rensa-0.1.6-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl (291.9 kB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

rensa-0.1.6-pp38-pypy38_pp73-musllinux_1_2_x86_64.whl (452.9 kB view details)

Uploaded PyPy musllinux: musl 1.2+ x86-64

rensa-0.1.6-pp38-pypy38_pp73-musllinux_1_2_i686.whl (470.6 kB view details)

Uploaded PyPy musllinux: musl 1.2+ i686

rensa-0.1.6-pp38-pypy38_pp73-musllinux_1_2_armv7l.whl (546.4 kB view details)

Uploaded PyPy musllinux: musl 1.2+ ARMv7l

rensa-0.1.6-pp38-pypy38_pp73-musllinux_1_2_aarch64.whl (466.1 kB view details)

Uploaded PyPy musllinux: musl 1.2+ ARM64

rensa-0.1.6-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (281.2 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rensa-0.1.6-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (338.4 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ s390x

rensa-0.1.6-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (321.6 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

rensa-0.1.6-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (284.6 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

rensa-0.1.6-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (286.9 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rensa-0.1.6-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl (293.0 kB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

rensa-0.1.6-cp312-none-win_amd64.whl (151.1 kB view details)

Uploaded CPython 3.12 Windows x86-64

rensa-0.1.6-cp312-none-win32.whl (143.3 kB view details)

Uploaded CPython 3.12 Windows x86

rensa-0.1.6-cp312-cp312-musllinux_1_2_x86_64.whl (452.3 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

rensa-0.1.6-cp312-cp312-musllinux_1_2_i686.whl (470.9 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ i686

rensa-0.1.6-cp312-cp312-musllinux_1_2_armv7l.whl (546.6 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARMv7l

rensa-0.1.6-cp312-cp312-musllinux_1_2_aarch64.whl (465.5 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

rensa-0.1.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (281.3 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

rensa-0.1.6-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl (327.5 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ s390x

rensa-0.1.6-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (321.4 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ppc64le

rensa-0.1.6-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (285.6 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARMv7l

rensa-0.1.6-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (286.6 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

rensa-0.1.6-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl (291.3 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.5+ i686

rensa-0.1.6-cp312-cp312-macosx_11_0_arm64.whl (243.9 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

rensa-0.1.6-cp312-cp312-macosx_10_12_x86_64.whl (246.5 kB view details)

Uploaded CPython 3.12 macOS 10.12+ x86-64

rensa-0.1.6-cp311-none-win_amd64.whl (152.0 kB view details)

Uploaded CPython 3.11 Windows x86-64

rensa-0.1.6-cp311-none-win32.whl (143.9 kB view details)

Uploaded CPython 3.11 Windows x86

rensa-0.1.6-cp311-cp311-musllinux_1_2_x86_64.whl (452.5 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

rensa-0.1.6-cp311-cp311-musllinux_1_2_i686.whl (470.3 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ i686

rensa-0.1.6-cp311-cp311-musllinux_1_2_armv7l.whl (547.8 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARMv7l

rensa-0.1.6-cp311-cp311-musllinux_1_2_aarch64.whl (466.3 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

rensa-0.1.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (281.6 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

rensa-0.1.6-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (335.7 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

rensa-0.1.6-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (321.6 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

rensa-0.1.6-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (286.4 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARMv7l

rensa-0.1.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (287.1 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

rensa-0.1.6-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl (291.1 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.5+ i686

rensa-0.1.6-cp311-cp311-macosx_11_0_arm64.whl (244.8 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

rensa-0.1.6-cp311-cp311-macosx_10_12_x86_64.whl (247.2 kB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

rensa-0.1.6-cp310-none-win_amd64.whl (152.2 kB view details)

Uploaded CPython 3.10 Windows x86-64

rensa-0.1.6-cp310-none-win32.whl (143.8 kB view details)

Uploaded CPython 3.10 Windows x86

rensa-0.1.6-cp310-cp310-musllinux_1_2_x86_64.whl (452.2 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

rensa-0.1.6-cp310-cp310-musllinux_1_2_i686.whl (470.6 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ i686

rensa-0.1.6-cp310-cp310-musllinux_1_2_armv7l.whl (547.6 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARMv7l

rensa-0.1.6-cp310-cp310-musllinux_1_2_aarch64.whl (466.3 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

rensa-0.1.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (281.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rensa-0.1.6-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (337.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

rensa-0.1.6-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (321.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

rensa-0.1.6-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (286.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARMv7l

rensa-0.1.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (287.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rensa-0.1.6-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl (291.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.5+ i686

rensa-0.1.6-cp310-cp310-macosx_11_0_arm64.whl (244.9 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rensa-0.1.6-cp39-none-win_amd64.whl (152.4 kB view details)

Uploaded CPython 3.9 Windows x86-64

rensa-0.1.6-cp39-none-win32.whl (144.0 kB view details)

Uploaded CPython 3.9 Windows x86

rensa-0.1.6-cp39-cp39-musllinux_1_2_x86_64.whl (452.8 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

rensa-0.1.6-cp39-cp39-musllinux_1_2_i686.whl (473.1 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ i686

rensa-0.1.6-cp39-cp39-musllinux_1_2_armv7l.whl (548.6 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARMv7l

rensa-0.1.6-cp39-cp39-musllinux_1_2_aarch64.whl (466.5 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARM64

rensa-0.1.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (281.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rensa-0.1.6-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (337.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

rensa-0.1.6-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (322.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

rensa-0.1.6-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (286.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARMv7l

rensa-0.1.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (287.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rensa-0.1.6-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (292.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ i686

rensa-0.1.6-cp39-cp39-macosx_11_0_arm64.whl (244.8 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rensa-0.1.6-cp38-none-win_amd64.whl (151.5 kB view details)

Uploaded CPython 3.8 Windows x86-64

rensa-0.1.6-cp38-none-win32.whl (143.8 kB view details)

Uploaded CPython 3.8 Windows x86

rensa-0.1.6-cp38-cp38-musllinux_1_2_x86_64.whl (452.6 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

rensa-0.1.6-cp38-cp38-musllinux_1_2_i686.whl (471.6 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ i686

rensa-0.1.6-cp38-cp38-musllinux_1_2_armv7l.whl (547.7 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ARMv7l

rensa-0.1.6-cp38-cp38-musllinux_1_2_aarch64.whl (466.8 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ARM64

rensa-0.1.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (282.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rensa-0.1.6-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (339.0 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

rensa-0.1.6-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (321.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

rensa-0.1.6-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (286.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARMv7l

rensa-0.1.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (287.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rensa-0.1.6-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (292.0 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

File details

Details for the file rensa-0.1.6.tar.gz.

File metadata

  • Download URL: rensa-0.1.6.tar.gz
  • Upload date:
  • Size: 60.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.6.0

File hashes

Hashes for rensa-0.1.6.tar.gz
Algorithm Hash digest
SHA256 e75836ed98b51feaed1ae31b455373ab21f22dee8a669d25e9164b1062009005
MD5 da71c94b44fc574befc24025a43ca2fb
BLAKE2b-256 2324ea7008aa5ce18c3f983d1855f2acc33a17c87c99a7938c8d8e52e6b3cd45

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 994f84253e74b4957d28d3030c90877089406edd25cf950ea11a1a2b68cab0ce
MD5 fb2b32311acb14797049f9834825c7cd
BLAKE2b-256 ea3837bfed4c06a1f077be260d393dd02b261898521453fb14aea1d9d5898d9e

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-pp310-pypy310_pp73-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-pp310-pypy310_pp73-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 3cc2a4815b80ab01803f1fbf72a3e9d785eb382ca128181bde28cac85aab0469
MD5 33fd05d25442adb98c9b1e049c183c59
BLAKE2b-256 0ae679c10a6af69c51f0b21ab1ad789d7f1307d556963513a2833c9ed851fa57

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-pp310-pypy310_pp73-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-pp310-pypy310_pp73-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 0c6d852b020b2762f7389b66031ed68d76624af96931d2c3c7a882177a8dc957
MD5 b32e048373cb43d7de16c75e3df86b81
BLAKE2b-256 216bcf49a9f54c3fcf6b50c35ef33e26513bf42f95b54244f07267a2aac774fe

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 978053268721166e80921e980b3d712f223ac86970794b92078cdf050a4a1c65
MD5 d7ac1a7f04d6f2449884a3851fef2989
BLAKE2b-256 607966685eb444e358c00e3a33a42177a1ed43abc8337c8fb35e285bb4a31935

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 42e4b1da55c1ba95a2b6d49beb92e6dd9c9b579936f2647b124b64ee8b2c39db
MD5 aa2ec5acd8146a5ceb20b71363a78060
BLAKE2b-256 bf5b9837c25f36e261bf7497b243a7f55234bf8e77f0e76d39d38d604aea1198

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 a7aa61c92a3855c859952841eb9ba12d605ee7d1abb3dd84aa9b5feeed7f57e1
MD5 d6f160f3692ac99bfba9ea92fb075a72
BLAKE2b-256 5cfa6ce41dd49b42610a949c7d6be809632c671e361ceda9a6201f2bcefc23f1

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 ce62ef1e00f57402e54f65d54338b0d0a3fafb2c327352731ca8005fe3c7cfbf
MD5 0760906ee980c784c09feaa793375387
BLAKE2b-256 3583d2b407491686bd0f28563e4fe8a3aa7df8d6ceafbcd31096f1c857111768

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 450696346bffe4709ecdd463d4e3a1854963d4c7b17aa9c0e4aae0110b7dd649
MD5 4c6efeab0ea8b622fed16461dd01c7ef
BLAKE2b-256 ffaa8115e5333c35c8cbb34c77d3257e3dd9d71190eccf2085dd27ae4c86ecd1

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9bdb65e719e1e2aae473ce592adf3661f589dfa829e77b13abd0ea3cf0bcfec6
MD5 82114bca97af2c5008b3c7c17237f1e9
BLAKE2b-256 cd796446bad36c15585757a2942dd352cd9dcf57ea22c9a7f4712cde56b8239d

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 e0f81bfaf97cd30d982ee92fc570808c64a423fc0a6209a95541de8238fd8d79
MD5 77f46da344016e742427c0ba97611552
BLAKE2b-256 a9165242987d5064d03fce05d658a98799492e97ce64ea303f33fa9921fa36d1

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 d43a6e0301a90ca1074cec851035f7f9374dc5b84af49f6b20a08184ade72093
MD5 13d1fea34510b0a5a41e9856412f172d
BLAKE2b-256 dc444df30bfa70ad914073af6048a1d63c2a0f729b574d313d00607be9f4102d

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-pp39-pypy39_pp73-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-pp39-pypy39_pp73-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 50c6a796518ad555305369efa16039a214637c74ff76961961473dd814c635de
MD5 0b9e86040bb4042bb5fb7266b64cc9d2
BLAKE2b-256 45f9a641a89427843ef31e4c2e2ab8590870e4acd8b2ffa98b32d8f342260ae9

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-pp39-pypy39_pp73-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-pp39-pypy39_pp73-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 f7753bd167f9543f11182716a65573ec70e0ba987fa4cc698209e4b38656191a
MD5 2fa7971c660d81b1b41f1badc959d9ba
BLAKE2b-256 5577c13692df86ee556e3108e348456488f1c83719cf9de52cc13ab269f4a1ef

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 30b9302df6d05b9d0222d081bea0f9178f1347099586cb445f109de33f8142a4
MD5 3f6cf4d6028a7ee6693d73f37cc29f23
BLAKE2b-256 2532a18789c0dcec83258357faa96721214db69edc5ff74ae3a1a22537f6d612

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 707c7f17a2b109f2515bff4eb4953d690dc798194b5f61152838f2c8648bd937
MD5 653f184ebef274ebef675ae0c41ca4f1
BLAKE2b-256 c8d0f15baa2575fbc26767927fe14a0eded1819b81abec7e6f2030190d321915

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 7cd65cc3305d3f3a494638715e74b701969403f234695e36b291345048f050bd
MD5 49ac594652c4ef0ef223cc434cec8cb7
BLAKE2b-256 30d2d869483c842a4b22765dd09c15edbfee4bd9192f3e03752afda36b78a732

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 a95e42b60042b7a100bb4f816b50b950aa6522818df31fff91e9d5bba250c109
MD5 35dcb19b9e77290b67ea408447d4f815
BLAKE2b-256 70e647ca9c01a39f5a34554bfb63d7c7255b9e510a1e4d270bd48fb8bb63f573

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 7dd330d0c26e645bc919014d1e131e1e5c63a47d3eeb36a90b30f241b39fad5b
MD5 ce1f55431a1276757191bfae2ee23db7
BLAKE2b-256 c6f280e6410406a1f8efe05045bb2de68dc17f0db5f62c76e15003259100f583

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 40c2af30cf14308431ec68b0751c2253bb69ef3b90bdfe554c7a7ec9b3186c1a
MD5 fa8a009f610a7ad14811b52203fad26b
BLAKE2b-256 69633e16a7e3703c666cbf33f646c2f9e369288dcf346be5399a98ede42eb720

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 7144fba01d44075443ea1b0b07fbfee5cea4b0349c31bafcc7933683f66eacff
MD5 5b8e82c4179270031e0c5c828126d26e
BLAKE2b-256 1fba89bde4c9519ad070e5b726d463826c98a0cd01b000b233b5e90b0cd2b2ae

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-pp38-pypy38_pp73-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-pp38-pypy38_pp73-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 c6e7303f25406c71ed2bf3794a58982f292f0e2754b31c45b169adfc290ccdf1
MD5 8c15179b60d6cf8cceae2d80cd69dc17
BLAKE2b-256 5a14db07bb1bafc0496ae6cf7be536954445e1363b46b3ca8550b6ebe17101af

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-pp38-pypy38_pp73-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-pp38-pypy38_pp73-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 06696ef2e69a3e4cf184af4936f96ee4ecf11c046da02e07c172e5f9ec39e518
MD5 a0e6497204f563030a314095aec607cb
BLAKE2b-256 935f7c70c48ba49dcd521ae3aecee5708902f38e3863dafcc30a4aba1fe19c90

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-pp38-pypy38_pp73-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-pp38-pypy38_pp73-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 7f35eb4abbb7f693c0fa395f666d46d413038a6e18d98e5ef54eedb956697c32
MD5 c8f055e11110192727174c904fc24d03
BLAKE2b-256 2646d535f9e1bd6954e21740f1b77984eabf06f3d73c76475732723595550f58

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-pp38-pypy38_pp73-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-pp38-pypy38_pp73-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 9605775aea53b33d5646bd0a223bae2a60da2f22661bac8037570c89604399e2
MD5 d7c5b3e18086e98f033594d7aa675931
BLAKE2b-256 ab61217e05882c16283e36d74432348275fad4192581c0b17600d3470a221424

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 74a78eb363e2c02dc98258607cd51e3ddc8357249a22c6347d9dcf9ac2cc1801
MD5 4114ccc0937fb4433206ab65b5ebcbc3
BLAKE2b-256 7939665e6a4ddb57105c163b753a024f34abebc7659ec65e191bfda59c6a7249

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 2f4c8e5de651601f1e9f59061878ace7eaa98aec442b07e73e63ede2622971d6
MD5 761709d5cdb5aa565bea9e5c23a701e6
BLAKE2b-256 deb03b13c2563ab8fb01131749e520c48d8ae8cc247dcc1e8324b46ffbdc38be

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 e8d6b02e4202b068528f4b58f36eb1bbe9004a091793331e08a6be094c6730bc
MD5 dbbfe7a348b0b05e097f3f529ea45223
BLAKE2b-256 d8d3c210671d5709dda3fa0f8b4759f943a5fb823e78b7a56672855a0409e138

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 5e8a2dee805ee4e49af7c6867b3223d7c8c6f64f4e6cba98abcf7c51a0329e5a
MD5 08a39cfee33348518d3f4a0ba38c3eae
BLAKE2b-256 b5ac247d70e9f8515d1d6475d77832869382bbeb98cb0750e941884a32286bb8

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 66f0284d9d34fa9e45de3732ff25a941af6dc82ac0757f9bad4b195814d6de6f
MD5 89cb01c1d52f23c77e7600c5037799fd
BLAKE2b-256 734fa5f0cae566e41b46fe110c3014c8818be697040901a700becec00fc8a777

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 1ef442721a395182edad40b316636b98ff5d38669f4bddfcd34be9f2507683b9
MD5 5ff3173b07061fc06aa653d5ac809365
BLAKE2b-256 743031013c971189b5f680f6ee94f219d34a90813ab6d04e7a21ed792bae4dea

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp312-none-win_amd64.whl.

File metadata

  • Download URL: rensa-0.1.6-cp312-none-win_amd64.whl
  • Upload date:
  • Size: 151.1 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.6.0

File hashes

Hashes for rensa-0.1.6-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 f2a0d479f1c8622288cd64850bf1d01a34f39835eca5fe67c55d10acd87feec4
MD5 65dde38b913c6cd2a47c9842c6575273
BLAKE2b-256 7bfffc6bff246da6c916586dc10c392b930537f063eda66458f51cc8aa775898

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp312-none-win32.whl.

File metadata

  • Download URL: rensa-0.1.6-cp312-none-win32.whl
  • Upload date:
  • Size: 143.3 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.6.0

File hashes

Hashes for rensa-0.1.6-cp312-none-win32.whl
Algorithm Hash digest
SHA256 467c87b73b265403acc8e155e1029faf37355dd7ff56171dae39839f2acf136b
MD5 2f6e2b116815f44de76b9251337ddd49
BLAKE2b-256 b473397fe08b7296269f960d074a8ed54c463a903810eeee8f7cdda4e24a6761

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 33e695d0ea29b771737c9225231777130d48bb9805dde98d5b04ca87957f21e4
MD5 5b271be2cb317feacd5eead2c1c5b3ba
BLAKE2b-256 1128d35c5e43460a5669508e6642525ee4df69e218494d2a9446c0b466c07b3d

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 8320f3229c6a26668d3e6f7906e3e2227c364d1c14018bd4a5bbce1c87c2b723
MD5 3a6fa82b6d1900d0fe22f5d9bbf497c7
BLAKE2b-256 5802ab16421182d44002bc3acf3d3caa177edd9917212715e4ee98053f6a2f3e

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp312-cp312-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-cp312-cp312-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 bfcb1976fb19f9ffdc580000738a7daecd12a6c0638f96680ed146f3adc563ab
MD5 d9382184cc7d33fd40ae15ccfb9176a8
BLAKE2b-256 0788e06a061dc87cf9886634185b427976c90d551d4178b885c7bb2675600549

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 607682d9f9b92707e7604b1634ebdb92204a72064f04b718ff7dcd23b8a46a47
MD5 0ff1bdd3630e737f0b732f7c7cf9f1a5
BLAKE2b-256 f8c887102cef8ede71c0e30fd8509490c1bedc826800a2be6f7c820d8036e63c

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fc9be85a6367be8a92befb4d117d84d963484f68be0e28aba7aa977a2f4a4a0f
MD5 145c43f0eed97417027f1c19d8635d7e
BLAKE2b-256 a1ad23af9f439c8c336e15e2ededa57473dee38c7d00161df8a0affe7bb4709c

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 d1bced0ae9cf0990aea5a4f23e0bf7bfc10d24cfc8c16ade76dc17f4732befb4
MD5 744a6962b7c36587e9fe6555cfeb57f0
BLAKE2b-256 48a37e97354b1523414dbc2cb71bd84c3add1962be204ba4fd6da261d5b6cbd3

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 36146eec049de48f376fd87ace6cc4318e62270768d08c1b6d15cd174cc51f0a
MD5 15a0f249296ccdc98c507d0b8c0f2ccb
BLAKE2b-256 e137ba10e02ce176cf8433c8b9eff8cf177b06b9b045e096e14e0739b496dc6e

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 5ac01f98e02538a966628df25734c2c99dfbe14580ca57b9a55dee9105a77ebc
MD5 e7d8397ac4688d273ae2ab19e5455e16
BLAKE2b-256 68286ce29a00ec7b419133bc8cd11c86fb1b824fd8ab7ff4066e4e4c2b4f8c9f

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fb9bfb4b07ff526355e4eb847e8918b99086207d3bf836b7ec02d5726848229f
MD5 df78594134818c17d3ffb4944ddc6b33
BLAKE2b-256 a92a411096a36fb325bd50d249e9db3e35cf676bb87140018409281c2d06b93f

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 88d4527c56508658cf8c33e3e81f2c7fdb9eb8747a8a7d39aae9cec2d363fc0b
MD5 410d794c8164d4a489449c412f78953d
BLAKE2b-256 54f4b0dd24d0a1d795335d3181182b0a2a72b1c1aa315bc34a31d8127c1a2fb0

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5225adb4d40200e9a6104e06397319146b440f9dfea3d42cfdc00b62796314d1
MD5 35c552cb84a96183b75d05ff8a27ac49
BLAKE2b-256 e2da47453579df4929a378c22ec0674780a634b1e173eb68594eff62e218cb10

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp312-cp312-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-cp312-cp312-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 beb226ce779fb13f877ade3521312e7b951528cb8797f943b07c2cc076703509
MD5 805163f898823c88d2fc330b23973ae4
BLAKE2b-256 0d65875a4fa1ea8b1a4f45eb3e2770b78d534a14965571b2e0e9824c7f692808

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp311-none-win_amd64.whl.

File metadata

  • Download URL: rensa-0.1.6-cp311-none-win_amd64.whl
  • Upload date:
  • Size: 152.0 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.6.0

File hashes

Hashes for rensa-0.1.6-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 f9562721ca9d846fdb71b956d867062e9c8b96692f2854bf829ebd9898dcc73c
MD5 dddfae3f6e03e4c2eb3d13a2a9822468
BLAKE2b-256 8700d94d9d5f91277c5895afd749677621fb0f4c964b8b82dada0810f65e2ced

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp311-none-win32.whl.

File metadata

  • Download URL: rensa-0.1.6-cp311-none-win32.whl
  • Upload date:
  • Size: 143.9 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.6.0

File hashes

Hashes for rensa-0.1.6-cp311-none-win32.whl
Algorithm Hash digest
SHA256 fc77a3816139317d96ee09d975c483bdd098fdece006994c8aac27e1d90b5ffc
MD5 5d7e3274d85a493ceb8daf1a58cc98de
BLAKE2b-256 1fde784f2d5676b5981b34db649958bc31cca1bc141c3466e508cdb28524460b

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 606cd44206bfd14ff7c0ad277889e9552a49951b2bd615648ccc6286a88eab70
MD5 15bc838a9d8390af5b199dcf15bc0fa6
BLAKE2b-256 599ddc846f4ffdb002af7f1b9d6e8aaf05d72ccf9b984652c50bfca937918138

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 2b31226a72d0f22d94afb758c783a9e3dcd81b9788b40905debed6c17da13468
MD5 372096bf55fa2eebcacfe452e144b000
BLAKE2b-256 d386c11d1cb91103a6e51a8956ffae1002bdd123ceb37e28048400aa54e54c01

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp311-cp311-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-cp311-cp311-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 f5195df08f085b90e380513c76092393377f57ed6f2c057acaf0671610e0c424
MD5 a078db402882f07f4cf1f1ca16258b23
BLAKE2b-256 0ad656290017d6bce0923e0ef82e295ebbe98e45d5c626496b333c174d9d0f71

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 a09a188aaa5fa483a97ae68aa56fe13a11d1e1a2e40c69853d14a4b1d2f6a47e
MD5 f0fc337798754171606071be21e5c9b7
BLAKE2b-256 af871ac92567fd4d9b4345d6ecb421c626c4914634ef4d44ec53c64651b386d1

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 396a842c5c894f33489730c67dd55d24cd5eedbe2efa8ca7de30629519440db6
MD5 a01ccf01e4bc6292f3003bcb51ac90bd
BLAKE2b-256 51b05e33a2dba7ebd8063dee6a1f54b4f7cba91e0b214b1bc5afb9b9948dc183

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 a5e1ad1d063756b3dc869780232ee43cbd05d05a839dedab6e1b94e49b07ef66
MD5 66725079d2b5d8ff8e3bef252adf034b
BLAKE2b-256 d6e49a31fd45cf9961b5d2f5df7d73681f877978368df9476895f36df70ebe03

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 54400295f5bb9b30fbae7384d25021fef7fdd5cded0f4d633706da56f0678351
MD5 c01d2b4e2ac802101efc40fa4fb9a9e8
BLAKE2b-256 e0f8fc4a75144fb400221c5b16cee16b7eeffb77b57c779d97d90344c2fd01f1

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 1d5a86fe4fd711bbe232ce80bf6d9f0bd6942e4b209a06ccc503a45be689bff9
MD5 82a44101a2d0be5a75f3f2285cd12d1e
BLAKE2b-256 78788505a6622d7e4044a9383ff0fc397a56e37f3e95e1a495fdbddcbe23f6a7

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0373b3d5c10f5aeb5b26b6aac87c234ef05c0941093cb28f50ea6f02740be265
MD5 00542697b71ee4787f2ba4bc7228fed5
BLAKE2b-256 cc1dbbfd2e096918c19a92e925ece27a118a21c7796e4f6e278057cc53f82931

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 9877ce26430529dc1e234a8f48e29e26d66900ca5004eb575c45aa95703492f3
MD5 91c64e4abac5218cf11ea3831e9eed35
BLAKE2b-256 c6b1be4360778b407775fffbf76eda92052d66e750af97cc5cbdbe385ab0b573

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ef984f712935b7d477c8076ec24aaf79f82e9f19adeb5970b1cc04a37861eccc
MD5 ef5edf3673a4b21ae82a76df663402f2
BLAKE2b-256 1da49cd64a18f288d83e2f86d1fc7ab73fb9259a371be2f5a5f3b5884575f015

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 6d7f07d877a2a0ad2251015113d21345745ce15318281b2473518ad596b5601a
MD5 8b66fd43e9d6ec0811b35bd557b9d712
BLAKE2b-256 e2807c58d2188ff571e2ef0a5439a94f6598b983541bf780f151590ff72e162a

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp310-none-win_amd64.whl.

File metadata

  • Download URL: rensa-0.1.6-cp310-none-win_amd64.whl
  • Upload date:
  • Size: 152.2 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.6.0

File hashes

Hashes for rensa-0.1.6-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 bc88b5c3eb52e9bdc3db0836d7d22c83369fa05dde7dbe63248536f60f47e791
MD5 af6abc9e32391aff9de6493990c32d95
BLAKE2b-256 b3f58ab492655778075720cc1a4a84d74c5b84a60d2fd0208e4bf27f780f97df

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp310-none-win32.whl.

File metadata

  • Download URL: rensa-0.1.6-cp310-none-win32.whl
  • Upload date:
  • Size: 143.8 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.6.0

File hashes

Hashes for rensa-0.1.6-cp310-none-win32.whl
Algorithm Hash digest
SHA256 13e9e67a3c0c977785cea4f6310951300f5fa42ee09b323ae500f68d16bbfd53
MD5 eff9a8f0dd68517599181a40158e5f08
BLAKE2b-256 cf057d06964da9cfa562ff02f172feec8716ef87ea0f127b59e1400619ad0118

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 2ea46f404e381db314a5c521593d2beba5e920d3aa34ec2f6414cfcc893a50f1
MD5 1bf4f6172df4330f556cac42e0c215c2
BLAKE2b-256 f8f0e3ef538ea461570a20c5f89591c163913d7ba80591e4ae8dfe7feea062a1

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 53cf91b5e27b285efe4ff3aa9bb8395ceee8bda1b4019beb44e624f5c1e0af0f
MD5 7997173b18d29346100ab133f9ffe255
BLAKE2b-256 3df7ce6036b33e3a108ba7bd96aaaf591d894ea0057302a54127000beceee6e9

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp310-cp310-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-cp310-cp310-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 9e12582aef529232131760e9b589e531420931baa5648d92551c32816706c602
MD5 f83d854c190e62bdb80776da0e773440
BLAKE2b-256 c7bbe919598ffe596e6250759660abc0003bd329be5a3abb0ccbe8f898f53d5a

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 166304862ac552bd967a8c4eb0e400f7b40ec5492cac3260a7ef7fbf06bd1540
MD5 1ae24131b47cab7083ebbc7fa3cddd62
BLAKE2b-256 374414c7a3684ed5ec421da7424d36288b4b6ea5f002d1b5e0452dc504d4e10a

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8e3e94881b6aefb88edcf394f38f29fb097c6b90e14f7a4641ab6e817926a99c
MD5 5163c99c393349a416f0e7a593b0f82f
BLAKE2b-256 cc247089b81f798d8d1f3d2a2c3d05cf1642ec1a5a05e369fe12c15d0db4f9d3

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 6473ba0a0baa5be0b2905b42dc068901eba7c8960e82f090a25d66bd9fdfe5f6
MD5 62641773c360ef24179674fa56751701
BLAKE2b-256 97d2991ec893acdfb44ef48116d420557f94ca3d6dd40443bfe39cbbae646660

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 1c904c533c5806c81e2bd922d4dff417cd921c8cdced9b0f1b7f0c5de614feac
MD5 e35b00ba00fd6094567114c27910a913
BLAKE2b-256 cd907d26718d58514764b3894a01e29ee2bc1b60995ecda279316e36c519c012

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 5d107b932039cd36e72fea75eb665d60f9c15a2286ea9fc5d99b45e92f5386af
MD5 f437126353fe2a3fefad800377812877
BLAKE2b-256 378146b4efe14393f51099907becbeae258a09a22b74297ce245578254a801f9

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 459deb5f2ef61b1aa671e1d4bd003ccd067f12a0f1dce57267bf717d487b7837
MD5 db21351c8e2dea548d03aeceeafd719e
BLAKE2b-256 ebeed1b512082a2b51cbebd991ecbabf4c89a3d9dc5c28554eeba64cba86553a

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 89d75f46639f055101babec9ff446b6c9f530b0fae07c4ddef90f1395af758d0
MD5 2ea96bcb7366a309bbf289232ef5029c
BLAKE2b-256 1158e5f1cf594120d4d5bfffa366833ab31304aa14709041923a753c193f43bf

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b92d39db799622875a371828ad9f43b02763710004bd176bd6d79cc5c7e88e04
MD5 a49a62d68893910ccf02dca39687a4d8
BLAKE2b-256 40c9511748d78efd782e1c0c677577177e407f8145c986db6af21c059753a069

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp39-none-win_amd64.whl.

File metadata

  • Download URL: rensa-0.1.6-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 152.4 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.6.0

File hashes

Hashes for rensa-0.1.6-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 a76ed945690bb8c00a659dd2c48ea8f05c76700a43b208511cda63ef5dfdf45b
MD5 b9f72b18ac4c741f898c9b6138f52f55
BLAKE2b-256 d3bcdd87366a9eea7952a10d115e730cbf7889413382b6e50784e1ed6de0125b

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp39-none-win32.whl.

File metadata

  • Download URL: rensa-0.1.6-cp39-none-win32.whl
  • Upload date:
  • Size: 144.0 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.6.0

File hashes

Hashes for rensa-0.1.6-cp39-none-win32.whl
Algorithm Hash digest
SHA256 a550121b01d17db6485a6e55eefa9a760ba90438acc61dcb53b600e53c654a88
MD5 7458f1a198305b33488df72698fc1b9f
BLAKE2b-256 914d7ac2cff25a2d42d28b849d13773e871b4671ac8358de697fa7b79e43e276

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 7317203c77b27bc6fd9f8450ef666b6662075c602312afe09a6c94caf34b576f
MD5 f1f65683cfe37c9fc261bb2f1569b088
BLAKE2b-256 7dc98e1d15b0d953ef1780b53f633b81cb90d6ead965262cec38d9e621a958ee

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp39-cp39-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-cp39-cp39-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 e69377b35840f00409da513dc6dbaae9ea3a582662c3dee94a8c1e6bbfeea66b
MD5 2716978c409fce8a4e301e4958fb66f3
BLAKE2b-256 d18ad29843093a7ba456b8c408dc0220655ea79587d8bc1a3ef2200138593dd4

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp39-cp39-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-cp39-cp39-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 fd40e4b7564149e8a49ce2327b67ea00b2ed6b2b76d90ddb8383c93072f39e77
MD5 29fedaf343480b7be82262280ed21921
BLAKE2b-256 6f181a09e83608da82c6bfd5f153ff84a37219624453cd085d5405b1cb1ac4d7

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 d5982690b0982ed182a5c65bd1c7c542894577d29123d9f467efc3d600657c74
MD5 ebc07a81c6ec0f1a68f12c1f53a7fffb
BLAKE2b-256 dd0b582854d796a756ece309a77e91001e739303618173e88d8f88d5febc1b10

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 04c7b7f2e89b9913828e2b48e896577e9f128b83e4c99c571273275ba94bd297
MD5 353c2d7b154cc57676ca0ec3add64cc9
BLAKE2b-256 2b122d356eb1da13322e141f17ce918d19a4cee23d923dcb97679fd1b953942c

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 0e7087c1ce50bb25ff41f8483406ef6ec68087f174d8df42cfc29a998df3f9ed
MD5 389ea5a1f08b9f05cb95d40e61787091
BLAKE2b-256 59ba175a13b8b38491144dcacf125a828b77e53b49561c1112e7ee44e1692515

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 a34b7fe85018e6f252a522498d6d8f8e1c5f0129740e1c537ac3e2a2c8be16e6
MD5 33edddf91e73e133b19fbea81bcf3506
BLAKE2b-256 1b7bced5a9d5d1ad7edda897a530d93675dbc3ff27d527865f3b480626dc81df

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 14bd8219c5c8f6157b75b11c34e1bfd1569eddf46b067f2a05f815fb6b81bd5c
MD5 a2143d0a1df3ad2a17644f4bf6c07bd0
BLAKE2b-256 aca8f1ac235c0986847c36894f48b185c95dd7ed5dd2dbd497bfdd2082963c55

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 72d43cee1bb048df215d3ff2eba0c67e1a85cd560c59aa2074d12f9d65e7adec
MD5 a2977d9ba541e2832ecd9ba2d06f2d1e
BLAKE2b-256 47b8ed152a413278dc4a60609b872a2b22be9f50704af14797ee37b8f0a20964

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 03cb598d52a69b50202ba00420da47ee5234d2ea3dce69ba4e43765cd6b6500d
MD5 80b1f4d8d49655259189ab408703566a
BLAKE2b-256 6d0d3c57c0399c9a0f097db16d5443a1ba91b316f41f67f2c5843b27a98a4912

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 34ae42e77dcbe4af3359dc8c8003cdb8bc9c8281f966c358aff9e710da27087b
MD5 dec6a6c99f6992e9c8bb00e16b3d0cbd
BLAKE2b-256 42d2355abafd0ff9a950fba4d55fde861c0db05ef0ee0082057aae7ffa8e49fc

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp38-none-win_amd64.whl.

File metadata

  • Download URL: rensa-0.1.6-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 151.5 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.6.0

File hashes

Hashes for rensa-0.1.6-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 fe9390eb160a7b234cad65487c70b82ded31a725d1a798dbe7c77fa8ad69f80f
MD5 596d1260591bf80dd72832fbf797426d
BLAKE2b-256 fc5fa5342cf433a00739382c5ecbde4b69ea36fdd54005905f5d78e23bcc499f

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp38-none-win32.whl.

File metadata

  • Download URL: rensa-0.1.6-cp38-none-win32.whl
  • Upload date:
  • Size: 143.8 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.6.0

File hashes

Hashes for rensa-0.1.6-cp38-none-win32.whl
Algorithm Hash digest
SHA256 bbab828dd7bb87fb3a74768e209ec280705c2130bf4fbb0d4d00496b01f1d093
MD5 09dc7e1ab7af933c5032afea55eb598e
BLAKE2b-256 acb4b24534e8ed76f8cc3d866d6995514c342b115bb12d7848e593ae40fdb75d

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 1e517de2543188d2c78e4e85e0aa9dbfce7974001379dd57e99c870adfc038e4
MD5 284a5385fd096ff64bed2c083f7bbb2e
BLAKE2b-256 7ac2bde2003e51b7313680c75b0bbbe12d080c13c5460bc649099d0bde5923be

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp38-cp38-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-cp38-cp38-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 b06a2f46979088b647dfb5b5b8660f645b6dede77cdf2ac39c2e48372f43ebf6
MD5 47affe95b8c21f28c8795105f05e716b
BLAKE2b-256 0accfd4a900180cb234239164e3cc41a377c8ceeb8bd9f85f39e1ea235cd7cbd

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp38-cp38-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-cp38-cp38-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 b1edfdaa35060835bf664a8efcb0ee4a5c663a12e3d5e94ce1c8c41eef5f4c92
MD5 379c5d788f48a8e3b793ddeb41f4bbfe
BLAKE2b-256 98f6f77b74db36f9e7ac5408cc893318d8e8a9546641642091c54408ed11f4c3

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp38-cp38-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-cp38-cp38-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 3a5f6d7136603b303362161764ea0e3e27edfce04b65e72424ded3cc3db8e663
MD5 03a7326f0d41e44addc6676f80c1add1
BLAKE2b-256 e0bb8f552a198b0c7824a07bb396459febf1f760b74569e34027fdbeab77b407

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 457a893b410ae963581884dc3e9977f580f8bd7bbcd79dd5f7d1427dfd2b03e5
MD5 6ecb56eb7765873d244701aa58dcd6fc
BLAKE2b-256 617d757952abc0c9dced3d31de09b75a23c391f0ea9a8d5afa7f37d7a5c27471

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 b7f93d513344eaec43bed9e824422ad484ab951722aeed88a21545fe5a3dab61
MD5 06540a56c132dea68e1dcaad8f5779d7
BLAKE2b-256 516cc5f8b7c86b42d768a207b15fd6acb2969d76b663ffada1c0073b9f1031c1

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 dfd245c76ad614c80d264a05101f63a18b7800f0dab7194fed3712ddb0546bf2
MD5 cf5530f02e29b0a72c6b0e44310c643e
BLAKE2b-256 bdc3bf06f01f31e26ef4508ca68909058710266f3e6f3af788efc3045f3bfbc3

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 1a396e0a8dcbbdbe808fefb2a9c5e3ddd051d0cb5d4214891c5e31944184db6e
MD5 2008a93502e40eaeb6c40ebea0f2b1f7
BLAKE2b-256 23641ea268891c5ff9f3ad1850b2214b78b0a93004f4ed0f0569135ff88666d5

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ceca5d17375c8eafb9357319a600c7987fd5e79b21eaf43adbb56a2c7387d260
MD5 472156dbb00a7f31d088d1caff1018a3
BLAKE2b-256 78f8297c5f368bb6e0c1e3aaf5635c93871cec3a7cba3b54c1e6daede3144711

See more details on using hashes here.

File details

Details for the file rensa-0.1.6-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for rensa-0.1.6-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 7d6eb37e00e7d979b428365034b5ec202ebd9e8afc90107aa218b2577022548b
MD5 96dbcd9219a29f7be3dc6960e0b21361
BLAKE2b-256 532949881ba6f9051c648bb1b837ee5c04484805a73b9e3fe38697c54d0ea65f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page