A practice example package
Project description
Training scripts
Dataset-independence
-
train.py
: train one model (eg. beta-vae, IWAE, bivae) on one specific hyperparamter config- E.g. Train
BiVAE
onosmnx_roads
data of the followingcities
, with images ofbgcolors
nohup python train.py --model_name="bivae" \ --latent_dim=10 --hidden_dims 32 64 128 256 --adv_dim 32 32 32 --adv_weight 1.0 \ --data_root="/data/hayley-old/osmnx_data/images" \ --data_name="osmnx_roads" \ --cities 'la' 'charlotte' 'vegas' 'boston' 'paris' \ 'amsterdam' 'shanghai' 'seoul' 'chicago' 'manhattan' \ 'berlin' 'montreal' 'rome' \ --bgcolors "k" "r" "g" "b" "y" --n_styles=5 \ --zooms 14 \ --gpu_id=2 --max_epochs=300 --terminate_on_nan=True \ -lr 3e-4 -bs 32 \ --log_root="/data/hayley-old/Tenanbaum2000/lightning_logs/2021-05-18/" &
- E.g.: Train
BIVAE
on Rotated MNIST of optionally specified subset (given as a filepath to.npy
file containing the indices from the original Training MNIST data)
## Specify which indices to use among the MNIST -- comparable to DIVA's experiments ## change 0 to anything inbtw 0,...,9 nohup python train.py --model_name="bivae" \ --latent_dim=128 --hidden_dims 32 64 64 64 --adv_dim 32 32 32 \ --data_name="multi_rotated_mnist" --angles -45 0 45 --n_styles=3 \ --selected_inds_fp='/data/hayley-old/Tenanbaum2000/data/Rotated-MNIST/supervised_inds_0.npy' \ --gpu_id=2
- E.g.: Train Bivae on multi styles of maptiles from specified cities
# Train BiVAE on Multi Maptiles MNIST nohup python train.py --model_name="bivae" \ --latent_dim=10 --hidden_dims 32 64 128 256 --adv_dim 32 32 32 --adv_weight 15.0 \ --data_name="multi_maptiles" \ --cities la paris \ --styles CartoVoyagerNoLabels StamenTonerBackground --n_styles=3 \ --zooms 14 \ --gpu_id=2 --max_epochs=400 --terminate_on_nan=True \ -lr 3e-4 -bs 32 \ --log_root="/data/hayley-old/Tenanbaum2000/lightning_logs/2021-01-23/" &
- E.g. Train
Hyperparameter tuning using Ray Tune
tune_asha.py
: UseTune
's AsyncHyperBandScheduler to search hyperparameter space more efficiently. Use--tune_metric
to specify the value oftune.run
'smetric
argument, e.g.--tune_metric loss
fortune_asha_with_beta_scheduler.py
:- `
Dataset-specific
Rotated MNIST
tune_asha_mnists.py
osmnx_roads
tune_asha_osmnx_roads.py
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
reprlearn-0.0.1.tar.gz
(65.3 kB
view details)
Built Distribution
reprlearn-0.0.1-py3-none-any.whl
(107.1 kB
view details)
File details
Details for the file reprlearn-0.0.1.tar.gz
.
File metadata
- Download URL: reprlearn-0.0.1.tar.gz
- Upload date:
- Size: 65.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 897b07faab14676e28a64de1acca8615a3a150cc89e86c7bbd7d0bf68baae648 |
|
MD5 | b6e88d98a5f41a0e06fc4811d9173c07 |
|
BLAKE2b-256 | 615addbfdf47de7f24580bcd0984dcd82ae3aef1aecceb9ab0a28e0fcfb8eae6 |
File details
Details for the file reprlearn-0.0.1-py3-none-any.whl
.
File metadata
- Download URL: reprlearn-0.0.1-py3-none-any.whl
- Upload date:
- Size: 107.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 424504eb5ae9266c7e0037f25b5a26d834b23ffe4bdd5db547007f5f815b1b1a |
|
MD5 | 101b93da9acb073f337df34ca471d458 |
|
BLAKE2b-256 | 8255ca61e8846bee044c2dcb3b3f588c086bdab22bca46c65c52c8f132ecf115 |