Manipulate data with code that is less a golden retriever, and more a Samurai's sword
Project description
RGWML
By Ryan Gerard Wilson (https://ryangerardwilson.com)
Manipulate data with code that is less a golden retriever, and more a Samurai's sword
- Install
pip3 install --upgrade rgwml
- Import & Load Data
import rgwml as r
# For 99% use cases a Pandas df is good enough
d1 = r.p()
d1.fp('/path/to/your/file')
# For the remaining 1%
d2 = r.d()
d2.fp('/path/to/your/file')
- Create a rgwml.config file
An rgwml.config file is required for MSSQL, CLICKHOUSE, MYSQL, GOOGLE BIG QUERY, OPEN AI, NETLIFY and VERCEL integrations. It allows you to namespace your db connections, so you can query like this:
import rgwml as r
d = r.p()
d.fq('mysql_db2','SELECT * FROM your_table')
Set out below is the format of a rgwml.config file. Place it anywhere in your Desktop, Downloads or Documents directories.
{
"db_presets" : [
{
"name": "mssql_db9",
"db_type": "mssql",
"host": "",
"username": "",
"password": "",
"database": ""
},
{
"name": "clickhouse_db7",
"db_type": "clickhouse",
"host": "",
"username": "",
"password": "",
"database": ""
},
{
"name": "mysql_db2",
"db_type": "mysql",
"host": "",
"username": "",
"password": "",
"database": ""
},
{
"name": "bq_db1",
"db_type": "google_big_query",
"json_file_path": "",
"project_id": ""
}
],
"vm_presets": [
{
"name": "main_server",
"host": "",
"ssh_user": "",
"ssh_key_path": ""
}
],
"open_ai_key": "",
"netlify_token": "",
"vercel_token": ""
}
r.p()
Class Methods
Instantiate this class by d = r.p()
4.1. LOAD
# From raw data
d.frd(['col1','col2'],[[1,2,3],[4,5,6]])
# From path
d.fp('/absolute/path')
# From Directory (select from your last 7 recently modified files in your Desktop/Downloads/Documents directories)
d.fd()
# From query
d.fq('rgwml_config_db_preset_name','SELECT * FROM your_table')
# FROM chunkable query
d.fcq('rgwml_config_db_preset_name', 'SELECT * FROM your_table', chunk_size)
4.2. INSPECT
# Describe
d.d()
# Print
d.pr()
# First n rows
d.fnr('n')
# Last n rows
d.lnr('n')
# Top n unique values for specified columns
d.tnuv(n, ['col1', 'col2'])
# Bottom n unique values for specified columns
d.bnuv(n, ['col1', 'col2'])
# Is empty. Returns boolean, not chainable.
d.ie()
# Memory usage print.
d.mem()
# Print correlation
d.prc([('column1','column2'), ('column3','column4')])
# Print n frequency linear. Optional: order_by (str), which has options: ASC, DESC, FREQ_ASC, FREQ_DESC (default)
d.pnfl(5,'Column1,Columns')
# Print n frequency cascading. Optional: order_by (str), which has options: ASC, DESC, FREQ_ASC, FREQ_DESC (default)
d.pnfc(5,'Column1,Columns')
4.3. APPEND
# Append boolean classification column
d.abc('column1 > 30 and column2 < 50', 'new_column_name')
# Append DBSCAN cluster column. Optional: visualize (boolean)
d.adbscancc('Column1,Column2', 'new_cluster_column_name', eps=0.5, min_samples=5, visualize=True)
# Append n-cluster column. Available operations: KMEANS/ AGGLOMERATIVE/ MEAN_SHIFT/ GMM/ SPECTRAL/ BIRCH. Optional: visualize (boolean), n_cluster_finding_method (str) i.e. ELBOW/ SILHOUETTE/ FIXED:n (specify a number of n clusters).
d.ancc('Column1,Column2', 'KMEANS', 'new_cluster_column_name', n_clusters_finding_method='FIXED:5', visualize=True)
# Append percentile classification column
d.apc('0,25,50,75,100', 'column_to_be_analyzed', 'new_column_name')
# Append ranged classification column
d.arc('0,500,1000,2000,5000,10000,100000,1000000', 'column_to_be_analyzed', 'new_column_name')
# Append ranged date classification column
d.ardc('2024-01-01,2024-02-01,2024-03-01', 'date_column', 'new_date_classification')
# Append count of timestamps after reference time. Requires values in YYYY-MM-DD or YYYY-MM-DD HH:MM:SS format.
d.atcar('comma_separated_timestamps_column', 'reference_date_or_timestamps_column', 'new_column_count_after_reference')
# Append count of timestamps before reference time. Requires values in YYYY-MM-DD or YYYY-MM-DD HH:MM:SS format.
d.atcbr('comma_separated_timestamps_column', 'reference_date_or_timestamp_column', 'new_column_count_before_reference')
4.4. DOCUMENTATION
# Prints docs. Optional parameter: method_type_filter (str) egs. 'APPEND, PLOT'
d.doc()
4.5. JOINS
# Union join
d.uj(d2)
# Bag union join
d.buj(d2)
# Left join
d.lj(d2,'table_a_id','table_b_id')
# Right join
d.rj(d2,'table_a_id','table_b_id')
4.6. PERSIST
# Save (saves as csv (default) or h5, to desktop (default) or path)
d.s('/filename/or/path')
4.7. PLOT
# Plot correlation heatmap for the specified columns. Optional param: image_save_path (str)
d.pcr(y='Column1, Column2, Column3')
# Plot distribution histograms for the specified columns. Optional param: image_save_path (str)
d.pdist(y='Column1, Column2, Column3')
# Plot line chart. Optional param: x (str), i.e. a single column name for the x axis eg. 'Column5', image_save_path (str)
d.plc(y='Column1, Column2, Column3')
# Plot Q-Q plots for the specified columns. Optional param: image_save_path (str)
d.pqq(y='Column1, Column2, Column3')
4.8. PREDICT
# Append XGB training labels based on a ratio string. Specify a ratio a:b:c to split into TRAIN, VALIDATE and TEST, or a:b to split into TRAIN and TEST.
d.axl('70:20:10')
# Append XGB regression predictions. Assumes labelling by the .axl() method. Optional params: boosting_rounds (int), model_path (str)
d.axlinr('target_column','feature1, feature2, feature3','prediction_column_name')
# Append XGB logistic regression predictions. Assumes labeling by the .axl() method. Optional params: boosting_rounds (int), model_path (str)
d.axlogr('target_column','feature1, feature2, feature3','prediction_column_name')
4.9. TINKER
# Cascade sort by specified columns.
d.cs(['Column1', 'Column2'])
# Filter
d.f("col1 > 100 and Col1 == Col3 and Col5 == 'XYZ'")
# Filter Indian Mobiles
d.fim('mobile')
# Filter Indian Mobiles (complement)
d.fimc('mobile')
# Make numerically parseable by defaulting to zero for specified column
d.mnpdz(['Column1', Column2])
# Rename columns
d.rnc({'old_col1': 'new_col1', 'old_col2': 'new_col2'})
4.10. TRANSFORM
# Group. Permits multiple aggregations on the same column. Available agg options: sum, mean, min, max, count, size, std, var, median, css (comma-separated strings), etc.
d.(['group_by_columns'], ['column1::sum', 'column1::count', 'column3::sum'])
# Pivot. Optional param: seg_columns. Available agg options: sum, mean, min, max, count, size, std, var, median, etc.
d.p(['group_by_cols'], 'values_to_agg_col', 'sum', ['seg_columns'])
r.d()
Methods
Instantiate this class by d = r.d()
5.1. LOAD
# From raw data
d.frd(['col1','col2'],[[1,2,3],[4,5,6]])
# From path
d.fp('/absolute/path')
5.2. INSPECT
# Print
d.pr()
5.3. DOCUMENTATION
# Prints docs. Optional parameter: method_type_filter (str) egs. 'APPEND, PLOT'
d.doc()
5.4. JOINS
# Union join
d.uj(d2)
5.5. PERSIST
# Save (saves as csv (default) or h5, to desktop (default) or path)
d.s('/filename/or/path')
5.6. TINKER
# Filter Indian Mobiles
d.fim('mobile')
# Filter Indian Mobiles (complement)
d.fimc('mobile')
5.7. TRANSFORM
# Group. Permits multiple aggregations on the same column. Available agg options: sum, mean, min, max, count, size, std, var, median, css (comma-separated strings), etc.
d.(['group_by_columns'], ['column1::sum', 'column1::count', 'column3::sum'])
# Pivot. Optional param: seg_columns. Available agg options: sum, mean, min, max, count, size, std, var, median, etc.
d.p(['group_by_cols'], 'values_to_agg_col', 'sum', ['seg_columns'])
r.f()
Methods
Instantiate this class by crm = r.f()
6.1. Serve a CRM
# Serves a CRM with a Scaffolded MYSQL DB, Backend (i.e., a Bottle App on your GCS VM), and NextJS Frontend on your local machine with highly customized options based on modal definitions. Note that all modal names, modal column names, and option values must NOT contain spaces and should be separated by underscores.
"""
ENVIRONMENT SETUP
1. Install the latest version of NodeJS (https://nodejs.org/en/download/package-manager/current)
2. Ensure that your rgwml.config sets out details of the VM being used, as well as your VERCEL and NETLIFY tokens
"""
crm.ser(
project_name= 'my_custom_crm',
new_db_name= 'custom_crm_db',
db_preset_name='standard_mysql',
vm_preset_name='default_gcs_vm',
modal_backend_config={
"sudo": {
"username": "admin",
"password": "admin123"
},
"modals": {
"customer_support_tickets": "ticket_id,customer_name,mobile,issue,status,priority,action_taken,follow_up_date",
"vip_customers": "customer_id,customer_name,mobile,issue,priority,status,action_taken,follow_up_date",
"onboarding_calls": "call_id,customer_name,mobile,status,issue,action_taken"
}
},
modal_frontend_config={
"customer_support_tickets": {
"options": {
"status": ["Open", "In_Progress", "Resolved", "Closed"],
"priority": ["Low", "Medium", "High"],
"issue": ["Billing_Issue", "Technical_Support", "Account_Management", "Other"]
},
"conditional_options": {
"priority": [
{
"condition": "status == Open",
"options": ["Low", "Medium", "High"]
},
{
"condition": "status == In_Progress",
"options": ["Medium", "High"]
},
{
"condition": "status == Resolved",
"options": ["Low"]
}
]
},
"scopes": {
"create": True,
"read": ["ticket_id", "customer_name", "mobile", "issue", "status", "priority", "action_taken", "follow_up_date", "created_at"],
"update": ["customer_name", "mobile", "issue", "status", "priority", "action_taken", "follow_up_date"],
"delete": True
},
"validation_rules": {
"ticket_id": ["REQUIRED"],
"customer_name": ["REQUIRED"],
"mobile": ["REQUIRED"],
"issue": ["REQUIRED"],
"status": ["REQUIRED"],
"priority": ["REQUIRED"],
"action_taken": ["REQUIRED"],
"follow_up_date": ["REQUIRED", "IS_AFTER_TODAY"]
},
"ai_quality_checks": {
"action_taken": ["must describe a meaningful step taken to address the customer's issue"]
}
},
"vip_customers": {
"options": {
"status": ["Open", "In_Progress", "Resolved", "Closed"],
"priority": ["Medium", "High"],
"issue": ["Billing_Issue", "Technical_Support", "Account_Management", "Other"]
},
"scopes": {
"create": True,
"read": ["customer_id", "customer_name", "mobile", "issue", "priority", "status", "action_taken", "follow_up_date", "created_at"],
"update": ["issue", "status", "action_taken", "follow_up_date"],
"delete": False
},
"validation_rules": {
"customer_id": ["REQUIRED"],
"customer_name": ["REQUIRED"],
"mobile": ["REQUIRED","IS_INDIAN_MOBILE_NUMBER"],
"issue": ["REQUIRED"],
"status": ["REQUIRED"],
"priority": ["REQUIRED"],
"action_taken": ["REQUIRED"],
"follow_up_date": ["REQUIRED", "IS_AFTER_TODAY"]
},
"ai_quality_checks": {
"action_taken": ["must describe a meaningful step taken to address the VIP customer's issue"]
}
},
"onboarding_calls": {
"options": {
"status": ["Completed", "Pending"],
"issue": ["General_Inquiry", "Technical_Support", "Billing_Issue", "Other"]
},
"scopes": {
"create": True,
"read": ["call_id", "customer_name", "mobile", "issue", "status", "action_taken", "created_at"],
"update": ["issue", "status", "action_taken"],
"delete": False
},
"validation_rules": {
"call_id": ["REQUIRED"],
"customer_name": ["REQUIRED"],
"mobile": ["REQUIRED"],
"issue": ["REQUIRED"],
"status": ["REQUIRED"],
"action_taken": ["REQUIRED"]
},
"ai_quality_checks": {
"action_taken": ["must describe a meaningful conversation with the customer during the onboarding call"]
}
}
},
backend_vm_deploy_path='/home/user/Apps/custom_crm_backend',
backend_domain='my_custom_crm_api.example.com',
frontend_local_deploy_path='/home/user/Apps/custom_crm_frontend',
frontend_domain='my_custom_crm.example.com',
open_ai_json_mode_model='gpt-3.5-turbo'
)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.