Multi-Agent Reinforcement Learning Environment for the card game SkyJo, compatible with PettingZoo and RLLIB
Project description
skyjo_rl
Multi-Agent Reinforcement Learning Environment for the card game SkyJo, compatible with PettingZoo and RLLIB
Project Organization
├── LICENSE
├── Makefile <- Makefile with commands like `make data` or `make train`
├── README.md <- The top-level README for developers using this project.
│
├── docs <- Docs HTMLs, see Sphinx [docs](https:/michaelfeil.github.io/skyjo_rl)
│
├── models <- Trained and serialized models, model predictions, or model summaries
│
├── notebooks <- Jupyter notebooks.
├── requirements.txt <- requirements for the rlskyjo
├── requirements_dev.txt <- requirements for developers
├── rlskyjo
│ ├── environment
│ │ ├── skyjo_env.py
│ │ └── vanilla_env_example.py
│ ├── game
│ │ ├── sample_game.py
│ │ └── skyjo.py
│ ├── models
│ │ ├── action_mask_model.py
│ │ ├── random_admissible_policy.py
│ │ └── train_model_simple_rllib.py
│ └── utils.py
├── setup.py <- makes project pip installable (pip install -e .) so skyjo_rl can be imported
├── test_environment.py
├── tests <- Unittests
└── tox.ini <- tox file with settings for running tox; see tox.readthedocs.io
PYPI Install
conda create --name skyjo python=3.8 pip
conda activate skyjo
pip install rlskyjo
Developer Install
git clone https://github.com/michaelfeil/skyjo_rl.git
conda create --name skyjo python=3.8 pip
conda activate skyjo
pip install -r requirements.txt
pip install -r requirements_dev.txt
pip install -e .
pre-commit install
coverage run -m --source=./rlskyjo pytest tests
Tutorials
Vanilla SkyJo PettingZoo Env example
Train PPO MultiAgent with SkyJo PettingZoo Env, Pytorch and RLLib
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
rlskyjo-1.0.0.tar.gz
(16.6 kB
view details)
Built Distribution
rlskyjo-1.0.0-py3-none-any.whl
(17.7 kB
view details)
File details
Details for the file rlskyjo-1.0.0.tar.gz
.
File metadata
- Download URL: rlskyjo-1.0.0.tar.gz
- Upload date:
- Size: 16.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 74b9e56640d7a0dde9b36e749c4842bd3113ae65ffbe88f6fcce0a5b90d1af6e |
|
MD5 | c98997f06339db49d7a1df3092a8e492 |
|
BLAKE2b-256 | 53f157150dcd6ffbd5431c99624f52521bfb7b068ab7bb396035dcab6fb4a063 |
File details
Details for the file rlskyjo-1.0.0-py3-none-any.whl
.
File metadata
- Download URL: rlskyjo-1.0.0-py3-none-any.whl
- Upload date:
- Size: 17.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9c18e833881ab1ffc5d3f39c5f9655147d752ed42edd9dfd3524a92cae1748e9 |
|
MD5 | 63d2d1d01643532dcdd68239d5ec6792 |
|
BLAKE2b-256 | 2ca85c38858a16c4fdfe22b02e90cf7d3e8c75fbd638a5777b0532e36720e20c |