Skip to main content

Multi-Agent Reinforcement Learning Environment for the card game SkyJo, compatible with PettingZoo and RLLIB

Project description

skyjo_rl

Multi-Agent Reinforcement Learning Environment for the card game SkyJo, compatible with PettingZoo and RLLIB

codecovCI pytest

Read the docs

Contributors Forks Stargazers Issues MIT License LinkedIn

Project Organization

Github Repository

├── LICENSE
├── Makefile                <- Makefile with commands like `make data` or `make train`
├── README.md               <- The top-level README for developers using this project.
│
├── docs                    <- Docs HTMLs, see Sphinx [docs](https:/michaelfeil.github.io/skyjo_rl)
│
├── models                  <- Trained and serialized models, model predictions, or model summaries
│
├── notebooks               <- Jupyter notebooks. 
├── requirements.txt                        <- requirements for the rlskyjo
├── requirements_dev.txt                    <- requirements for developers
├── rlskyjo                                    
│   ├── environment
│   │   ├── skyjo_env.py
│   │   └── vanilla_env_example.py
│   ├── game
│   │   ├── sample_game.py
│   │   └── skyjo.py
│   ├── models
│   │   ├── action_mask_model.py
│   │   ├── random_admissible_policy.py
│   │   └── train_model_simple_rllib.py
│   └── utils.py
├── setup.py                                <- makes project pip installable (pip install -e .) so skyjo_rl can be imported
├── test_environment.py
├── tests                                   <- Unittests
└── tox.ini                                 <- tox file with settings for running tox; see tox.readthedocs.io

PYPI Install

conda create --name skyjo python=3.8 pip
conda activate skyjo
pip install rlskyjo

Developer Install

git clone https://github.com/michaelfeil/skyjo_rl.git
conda create --name skyjo python=3.8 pip
conda activate skyjo
pip install -r requirements.txt
pip install -r requirements_dev.txt
pip install -e .
pre-commit install
coverage run -m --source=./rlskyjo pytest tests

Tutorials

Vanilla SkyJo PettingZoo Env example

SkyJo game example

Train PPO MultiAgent with SkyJo PettingZoo Env, Pytorch and RLLib

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rlskyjo-1.0.0.tar.gz (16.6 kB view details)

Uploaded Source

Built Distribution

rlskyjo-1.0.0-py3-none-any.whl (17.7 kB view details)

Uploaded Python 3

File details

Details for the file rlskyjo-1.0.0.tar.gz.

File metadata

  • Download URL: rlskyjo-1.0.0.tar.gz
  • Upload date:
  • Size: 16.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for rlskyjo-1.0.0.tar.gz
Algorithm Hash digest
SHA256 74b9e56640d7a0dde9b36e749c4842bd3113ae65ffbe88f6fcce0a5b90d1af6e
MD5 c98997f06339db49d7a1df3092a8e492
BLAKE2b-256 53f157150dcd6ffbd5431c99624f52521bfb7b068ab7bb396035dcab6fb4a063

See more details on using hashes here.

File details

Details for the file rlskyjo-1.0.0-py3-none-any.whl.

File metadata

  • Download URL: rlskyjo-1.0.0-py3-none-any.whl
  • Upload date:
  • Size: 17.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for rlskyjo-1.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 9c18e833881ab1ffc5d3f39c5f9655147d752ed42edd9dfd3524a92cae1748e9
MD5 63d2d1d01643532dcdd68239d5ec6792
BLAKE2b-256 2ca85c38858a16c4fdfe22b02e90cf7d3e8c75fbd638a5777b0532e36720e20c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page