Cool package for robust AI
Project description
Installation
Robbytorch
requires Pytorch, however it's not specified in the dependencies - we recommend installing Pytorch manually via conda and only later installing Robbytorch by pip. Pytorch has to be in version 1.6
or higher.
Use your conda env or create a new one:
conda create --name <ENV NAME> python=3.8 pip
conda activate <ENV NAME>
Install Pytorch. If you have older drivers for GPU you may require older version of CUDA, i.e.:
conda install pytorch torchvision torchaudio cudatoolkit=10.1 -c pytorch -c conda-forge
or even older Pytorch version:
conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=10.1 -c pytorch
Then run:
pip install robbytorch
Usage
The basics of the Robbytorch
library are explained in the self-contained ipython/RobbyTutorial.ipynb
standalone juputer notebook.
TODO - further eplanations:
- trenowanie: 3x forward
- Writers objaśnić, livelossplot, mlflow, save
- Robust training i robust evaluation
- Explain target / regression
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file robbytorch-0.1.4.tar.gz
.
File metadata
- Download URL: robbytorch-0.1.4.tar.gz
- Upload date:
- Size: 29.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.5.0.1 requests/2.21.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 01581e7032bff084cace07b0f4054596669ca6be46cbf2a0917b1acdb78b147f |
|
MD5 | 326a591c609d43b1676c421f93f6ab88 |
|
BLAKE2b-256 | 290b0f7790162fa6bf0f033df4ee232f9a48e9e4a437d952376330c6c1d57a4c |
File details
Details for the file robbytorch-0.1.4-py3-none-any.whl
.
File metadata
- Download URL: robbytorch-0.1.4-py3-none-any.whl
- Upload date:
- Size: 48.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.5.0.1 requests/2.21.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4e3dd04810aad810ee81ffde72ea4dc7abd0fcfa3d13d28317af3c88b5040489 |
|
MD5 | 9e8e656b0effc87a33c483f502bd6fe5 |
|
BLAKE2b-256 | 08cb6393a0e051d7f2dfc2a465b97164e876a02fee03578669cefc124352724e |