Skip to main content

An mlf-core prediction package for root tissue segmentation.

Project description

Root-Tissue-Segmentation Package

Github Workflow Build rts_package Status Github Workflow Tests Status PyPI Status Documentation Status Dependabot Enabled

Prediction package for reproducible U-Net models, trained for semantic segmentation of microscopy images of root tissue from A. thaliana (https://github.com/qbic-pipelines/root-tissue-segmentation-core/). These models are trained using the mlf-core framework and tested for reproducibility. This package can be deployed within an analysis pipeline as a module for root tissue segmentation (rts) of fluorescence microscopy images.

Package Tools

  • Segmentation prediction CLI: rts-pred

  • Uncertainty of prediction CLI: rts-pred-uncert

  • Input feature importance (Guided Grad-CAM) CLI: rts-feat-imp

Usage Examples

  • rts-pred -i ./brightfields -o ./predictions -m mark1-PHDFM-u2net-model.ckpt --suffix ""

  • rts-pred-uncert -i ./brightfields -o ./predictions -m mark1-PHDFM-u2net-model.ckpt --suffix "" -t 5

  • rts-feat-imp -i ./brightfields -o ./predictions -m mark1-PHDFM-u2net-model.ckpt --suffix "" -t 2

Credits

This package was created with mlf-core using cookiecutter.

Changelog

This project adheres to Semantic Versioning.

1.0.0 (2021-08-10)

Added

Fixed

Dependencies

Deprecated

0.1.0 (2021-08-10)

Added

  • Created the project using mlf-core

Fixed

Dependencies

Deprecated

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

root-tissue-seg-package-1.0.6.tar.gz (17.2 kB view details)

Uploaded Source

Built Distribution

root_tissue_seg_package-1.0.6-py2.py3-none-any.whl (17.6 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file root-tissue-seg-package-1.0.6.tar.gz.

File metadata

File hashes

Hashes for root-tissue-seg-package-1.0.6.tar.gz
Algorithm Hash digest
SHA256 358caab8dacc9e6774cc8ccdfb4032a3212828b884f83d210727bee08c1090dd
MD5 128db4cec82c875d2423e4744cb63d9b
BLAKE2b-256 9caee74eb2d520aa1b22f18cbd610c7a95786e89694c2331e26ccc7126908efc

See more details on using hashes here.

File details

Details for the file root_tissue_seg_package-1.0.6-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for root_tissue_seg_package-1.0.6-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 3e4ab21834187242d944900bb0ba6ed7c054837ca9348141060b428fd2fbd2fb
MD5 48486bd70ecc7e0725bfecdb5cdbf5df
BLAKE2b-256 681b73eed45bfc1a5101f9d57d967c9af4c6984f9ab1ca85085c34563b54dae3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page