RS pretrained models in huggingface style
Project description
rshf
Remote sensing pretrained models easy loading using huggingface -- PyTorch (for fast benchmarking)
Installation:
pip install rshf
Example:
from rshf.satmae import SatMAE
model = SatMAE.from_pretrained("MVRL/satmae-vitlarge-fmow-pretrain-800")
input = model.transform(torch.randint(0, 256, (224, 224, 3)).float().numpy(), 224).unsqueeze(0)
print(model.forward_encoder(input, mask_ratio=0.0)[0].shape)
TODO:
- Add transforms for each model
- Add Documentation (https://rshf-docs.readthedocs.io/en/latest/)
- Add initial set of models
Citations
Model Type | Venue | Citation |
---|---|---|
BioCLIP | CVPR'24 | link |
CLIP | ICML'21 | link |
CROMA | NeurIPS'23 | link |
GeoCLAP | BMVC'23 | link |
GeoCLIP | NeurIPS'23 | link |
Presto | link | |
Prithvi | link | |
RemoteCLIP | TGRS'23 | link |
RVSA | TGRS'22 | link |
Sat2Cap | EarthVision'24 | link |
SatClip | link | |
SatMAE | NeurIPS'22 | link |
SatMAE++ | CVPR'24 | link |
ScaleMAE | ICCV'23 | link |
SINR | ICML'23 | link |
StreetCLIP | link |
List of models available here: Link
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
rshf-0.1.0.tar.gz
(2.0 MB
view details)
Built Distribution
rshf-0.1.0-py3-none-any.whl
(2.0 MB
view details)
File details
Details for the file rshf-0.1.0.tar.gz
.
File metadata
- Download URL: rshf-0.1.0.tar.gz
- Upload date:
- Size: 2.0 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ea94a818c2e63d71a29f70beb26aa53024091d8b3e79d14a138609a7bc685383 |
|
MD5 | 0ab70fc5e962050eb19ab5999a235697 |
|
BLAKE2b-256 | 6035bf3112f50edb87193e0ac2528473eb13932102d38af84364f9399188a64e |
File details
Details for the file rshf-0.1.0-py3-none-any.whl
.
File metadata
- Download URL: rshf-0.1.0-py3-none-any.whl
- Upload date:
- Size: 2.0 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3f18c1702e6c5eeacc0a0cd018e60c01fbd11db581a0508cdd54cab812fd5013 |
|
MD5 | 31ed625ea380b2ec26f19b2b479501cb |
|
BLAKE2b-256 | b3fccf25c4d289fc38422beed561edab87436156fe2c91c16d5ee711469f5cd2 |