Skip to main content

RS pretrained models in huggingface style

Project description

rshf

Remote sensing pretrained models easy loading using huggingface -- PyTorch (for fast benchmarking)

Installation:

pip install rshf

Example:

from rshf.satmae import SatMAE
model = SatMAE.from_pretrained("MVRL/satmae-vitlarge-fmow-pretrain-800")
input = model.transform(torch.randint(0, 256, (224, 224, 3)).float().numpy(), 224).unsqueeze(0)
print(model.forward_encoder(input, mask_ratio=0.0)[0].shape)

TODO:

Citations

Model Type Venue Citation
BioCLIP CVPR'24 link
CLIP ICML'21 link
CROMA NeurIPS'23 link
GeoCLAP BMVC'23 link
GeoCLIP NeurIPS'23 link
Presto link
Prithvi link
RemoteCLIP TGRS'23 link
RVSA TGRS'22 link
Sat2Cap EarthVision'24 link
SatClip link
SatMAE NeurIPS'22 link
SatMAE++ CVPR'24 link
ScaleMAE ICCV'23 link
SINR ICML'23 link
StreetCLIP link

List of models available here: Link

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rshf-0.1.1.tar.gz (2.0 MB view details)

Uploaded Source

Built Distribution

rshf-0.1.1-py3-none-any.whl (2.0 MB view details)

Uploaded Python 3

File details

Details for the file rshf-0.1.1.tar.gz.

File metadata

  • Download URL: rshf-0.1.1.tar.gz
  • Upload date:
  • Size: 2.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for rshf-0.1.1.tar.gz
Algorithm Hash digest
SHA256 f9fac4904b0cd9be68d5ad7a12025adb32bdbee27093aac93762096b65e4afd7
MD5 4d85a1e67bd899024151a90d3463e626
BLAKE2b-256 2a92c340a504ba6885e39907ea7ba6a1b71b65dec23e9b5564c4c53402738eb5

See more details on using hashes here.

File details

Details for the file rshf-0.1.1-py3-none-any.whl.

File metadata

  • Download URL: rshf-0.1.1-py3-none-any.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for rshf-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 79ff9dc5154803ff31a8b0bca0f3c0b9c8e22fbbb82adf632faa6c64979d63a7
MD5 0b9d9455570e71df7f1c07c7bfbdcb85
BLAKE2b-256 904d58e187590de5306836e8f0ad8846fde5fb87292d6d387bf407fcf1ea04ad

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page