Skip to main content

Russian Paraphrasers (based on ru-gpt, mt5)

Project description

Russian Paraphrasers

The library for Russian paraphrase generation. Paraphrase generation is an increasingly popular task in NLP that can be used in many areas:

  • style transfer:
    • translation from rude to polite
    • translation from professional to simple language
  • data augmentation: increasing the number of examples for training ML-models
  • increasing the stability of ML-models: training models on a wide variety of examples, in different styles, with different sentiment, but the same meaning / intent of the user

Install

pip install --upgrade pip
pip install -r requirements.txt
pip install russian_paraphrasers

in this case you need to add git+https://github.com/Maluuba/nlg-eval.git@master

Warning important in requirements.txt (versions!):

sentence-transformers==0.4.0
transformers>=4.0.1
git+https://github.com/Maluuba/nlg-eval.git@master

Or you can install last version from git:

pip install git+https://github.com/RussianNLP/russian_paraphrasers@master

Usage

Open In Colab

  1. First, import one of the models and set general parameters for your paraphraser:
from russian_paraphrasers import GPTParaphraser

paraphraser = GPTParaphraser(model_name="gpt2", range_cand=False, make_eval=False)
from russian_paraphrasers import Mt5Paraphraser

paraphraser = Mt5Paraphraser(model_name="mt5-base", range_cand=False, make_eval=False)

You can choose 1) to filter candidates or not 2) to add some evaluation of best candidates or all n samples.

Arguments:

  • model_name: mt5-small, mt5-base, mt5-large, gpt2
  • range_cand: True/False
  • make_eval: True/False
  1. Pass sentence (obligatory) and parameters for generating to generate function and see the results.
sentence = "Мама мыла раму."
results = paraphraser.generate(
    sentence, n=10, temperature=1, 
    top_k=10, top_p=0.9, 
    max_length=100, repetition_penalty=1.5,
    threshold=0.7
)

You can set the threshold parameter to range candidates, it measures by similarity score between original vector and the candidate vector.

Results for one sentence look like this:

{'average_metrics': {'Bleu_1': 0.06666666665333353,
                     'Bleu_2': 2.3570227263379004e-09,
                     'Bleu_3': 8.514692649183842e-12,
                     'Bleu_4': 5.665278056606597e-13,
                     'ROUGE_L': 0.07558859975216851},
 'best_candidats': ['В чём цель существования человека?',
                    'Для чего нужна жизнь?',
                    'Что такое жизнь в смысле смысла ее существования, и зачем '
                    'она нужна человеку.'],
 'predictions': ['В чём счастье людей, проживающих в мире сегодня',
                 'В чём счастье человека?)',
                 'Для чего нужна жизнь и какова цель ее существования?',
                 'Что означает фраза в том чтобы жить жизнью?',
                 'В чём ценность человеческой Жизни?',
                 'В чём счастье людей в мире? и т. д.',
                 'Зачем нужна жизнь и что в ней главное докуменция дл',
                 'В чём цель существования человека?',
                 'Что такое жизнь в смысле смысла ее существования, и зачем '
                 'она нужна человеку.',
                 'Для чего нужна жизнь?']
}

Models

All models were fine-tuned on the same dataset (see below) and uploaded to hugging_face. Available models:

To be continued... =)

Dataset

All models were finetuned on the dataset based on two parts:

  1. part of the ParaPhraser data, about 200k filtered examples
  2. filtered questions to chatbots and filtered subtitles from here

The dataset will be available soon as well as the article with all the details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

russian_paraphrasers-0.0.3.tar.gz (9.8 kB view details)

Uploaded Source

Built Distribution

russian_paraphrasers-0.0.3-py3-none-any.whl (11.9 kB view details)

Uploaded Python 3

File details

Details for the file russian_paraphrasers-0.0.3.tar.gz.

File metadata

  • Download URL: russian_paraphrasers-0.0.3.tar.gz
  • Upload date:
  • Size: 9.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/52.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.7.3

File hashes

Hashes for russian_paraphrasers-0.0.3.tar.gz
Algorithm Hash digest
SHA256 f1fbe1048b57db69dbef33424f13cd90fc9cfe5a57951cbd9ed06c1d9c545ab2
MD5 bf4d2e7c8d0db7141dd93a5a406d262d
BLAKE2b-256 6405e6eeb55842596771af34e59938140ae9439ddcc2383e508e6e8c50df892e

See more details on using hashes here.

File details

Details for the file russian_paraphrasers-0.0.3-py3-none-any.whl.

File metadata

  • Download URL: russian_paraphrasers-0.0.3-py3-none-any.whl
  • Upload date:
  • Size: 11.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/52.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.7.3

File hashes

Hashes for russian_paraphrasers-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 26ca556575ec04f9e5e52bc1a1b4c4bc15a1670d35a69380b3c8fdf8e5171d98
MD5 11ed151975436dab63d4a038b80e85d4
BLAKE2b-256 0dadb502c2831b07bc868d9cf77e340ac7652fb9fa7455fd1dc4db429f8b0c7f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page