Compute the S_Dbw validity index
Project description
S_Dbw
###Compute the S_Dbw or SD validity index
####S_Dbw validity index is defined by equation:
S_Dbw = Scatt + Dens_bw
where Scatt - means average scattering for clusters and Dens_bw - inter-cluster density.
Lower value -> better clustering.
####SD validity index is defined by equation:
SD = k*Scatt + distance
where distance - distances between cluster centers, k - weighting coefficient equal to distance(Cmax).
Lower value -> better clustering.
Installation
pip install --upgrade s-dbw
Usage
from s_dbw import S_Dbw
score = S_Dbw(X, labels, centers_id=None, method='Tong', alg_noise='bind',
centr='mean', nearest_centr=True, metric='euclidean')
#####OR
from s_dbw import SD
score = SD(X, labels, k=1.0, centers_id=None, alg_noise='bind',centr='mean', nearest_centr=True, metric='euclidean')
Parameters:
- X : array-like, shape (n_samples, n_features)
List of n_features-dimensional data points. Each row corresponds to a single data point. - labels : array-like, shape (n_samples,)
Predicted labels for each sample (-1 - for noise). - centers_id : array-like, shape (n_samples,)
The center_id of each cluster's center. If None - cluster's center calculate automatically. - alg_noise : str,
Algorithm for recording noise points.
'comb' - combining all noise points into one cluster (default)
'sep' - definition of each noise point as a separate cluster
'bind' - binding of each noise point to the cluster nearest from it
'filter' - filtering noise points - centr : str,
cluster center calculation method (mean (default) or median) - nearest_centr : bool,
The centroid corresponds to the cluster point closest to the geometric center (default: True). - metric : str,
The distance metric, can be ‘braycurtis’, ‘canberra’, ‘chebyshev’, ‘cityblock’, ‘correlation’,
‘cosine’, ‘dice’, ‘euclidean’, ‘hamming’, ‘jaccard’, ‘kulsinski’, ‘mahalanobis’, ‘matching’, ‘minkowski’,
‘rogerstanimoto’, ‘russellrao’, ‘seuclidean’, ‘sokalmichener’, ‘sokalsneath’, ‘sqeuclidean’, ‘wminkowski’,‘yule’.
Default is ‘euclidean’.
#####For S_Dbw: - method : str,
S_Dbw calc method:
'Halkidi' - original paper [1]
'Kim' - see [2]
'Tong' - see [3]
#####For SD: - k: float, The weighting coefficient equal to distance(Cmax). It is necessary for evaluating solutions with vary number of clusters because distance(C) depends on number of clusters [4].
Returns
score : float
The resulting S_Dbw or SD score.
References:
- M. Halkidi and M. Vazirgiannis, “Clustering validity assessment: Finding the optimal partitioning of a data set,” in ICDM, Washington, DC, USA, 2001, pp. 187–194.
- Youngok Kim and Soowon Lee. A clustering validity assessment Index. PAKDD’2003, Seoul, Korea, April 30–May 2, 2003, LNAI 2637, 602–608
- Tong, J. & Tan, H. J. Electron.(China) (2009) 26: 258. https://doi.org/10.1007/s11767-007-0151-8
- Halkidi, Maria & Vazirgiannis, Michalis & Batistakis, Yannis. (2000). Quality Scheme Assessment in the Clustering Process. LNCS (LNAI). 1910. 265-276. 10.1007/3-540-45372-5_26.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file s_dbw-0.4.0.tar.gz.
File metadata
- Download URL: s_dbw-0.4.0.tar.gz
- Upload date:
- Size: 7.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/39.1.0 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.6.7
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
8cead4094d6fec5225ad98f9127ee2b1a141b1afe2c55194cdfd9fcc8be1f494
|
|
| MD5 |
ca5703f43650e314dcb142e6ecca63f4
|
|
| BLAKE2b-256 |
8d4685d6c7875e6dad25e81f9e47d30e648446e0b0e31469be32f5c5bdfa12c2
|
File details
Details for the file s_dbw-0.4.0-py3-none-any.whl.
File metadata
- Download URL: s_dbw-0.4.0-py3-none-any.whl
- Upload date:
- Size: 8.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/39.1.0 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.6.7
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
aac5310afa988e31ef7c098952566609659b5a649f02359b93efbc68bc712030
|
|
| MD5 |
dc9f95482f5f69c24c8385fe26384729
|
|
| BLAKE2b-256 |
0e3dbd5788d448ab18d92dc38b10cccb6629eb89525a4c543ce38a0c5d12feb2
|