Skip to main content

graphQL API of safegraph.com using Python functions

Project description

safegraphQL

A Python library for accessing SafeGraph data through SafeGraph's GraphQL API.

Please see the SafeGraph API documentation for further information on GraphQL, available datasets, query types, use cases, and FAQs.

Please file issues on this repository for bugs or feature requests specific to this Python client. For bugs or feature requests related to the SafeGraph API itself, please contact [...]

Datasets

Core Places: Base information such as location name, category, and brand association for points of interest (POIs) where consumers spend time or business operations take place. Available for ~9.9MM POI including permanently closed POIs.

Geometry: POI footprints with spatial hierarchy metadata depicting when child polygons are contained by parents or when two tenants share the same polygon. Available for ~9.2MM POI (Geometry metadata not provided for closed POIs).

Patterns: Place, traffic, and demographic aggregations that answer: how often people visit, how long they stay, where they came from, where else they go, and more. Available for ~4.5MM POI in weekly and monthly versions. Historical data dating back to January 2018 is available via the API for the weekly version of Patterns only. For the monthly version of Patterns, only the most recent month is available via the API.

Installation

pip install safegraphQL

Usage

Requirements

Get an API key from the SafeGraph Shop and instantiate the client.

from safegraphql import client
sgql_client = client.HTTP_Client("MY_API_KEY")

Use the sgql_client object to make requests!

Outputs

By default, query functions in safegraphQL return pandas DataFrames. See the return_type parameter below for how to return a JSON response object instead.

lookup()

One Placekey

Query all Core Places columns for a single Placekey.

pk = 'zzw-222@8fy-fjg-b8v' # Disney World
core = sgql_client.lookup(product = 'core', placekeys = pk, columns = '*')

core
placekey parent_placekey location_name safegraph_brand_ids brands top_category sub_category naics_code latitude longitude street_address city region postal_code iso_country_code phone_number open_hours category_tags opened_on closed_on tracking_closed_since geometry_type
0 222-223@65y-rxx-djv 224-225@65y-rxx-dgk Walmart Supercenter ['SG_BRAND_04a8ca7bf49e7ecb4a32451676e929f0'] [{'brand_id': 'SG_BRAND_04a8ca7bf49e7ecb4a32451676e929f0', 'brand_name': 'Walmart Supercenter Canada'}] General Merchandise Stores, including Warehouse Clubs and Supercenters All Other General Merchandise Stores 452319 42.6947 -73.847 141 Washington Avenue Ext Albany NY 12205 US { "Mon": [["5:00", "23:00"]], "Tue": [["5:00", "23:00"]], "Wed": [["5:00", "23:00"]], "Thu": [["5:00", "23:00"]], "Fri": [["5:00", "23:00"]], "Sat": [["5:00", "23:00"]], "Sun": [["5:00", "23:00"]] } [] 2019-07-01 POLYGON

You can do the same for Geometry and Monthly Patterns.

geo = sgql_client.lookup(product = 'geometry', placekeys = pk, columns = '*')
patterns = sgql_client.lookup(product = 'monthly_patterns', placekeys = pk, columns = '*')

Query the most recent Weekly Patterns data

watterns = sgql_client.lookup(product = 'weekly_patterns', placekeys = pk, columns = '*')

Query an arbitrary set of columns from a dataset.

# requested columns must all come from the same dataset
cols = [
    'placekey',
    'location_name',
    'street_address',
    'city',
    'region',
    'brands',
    'top_category',
    'sub_category',
    'naics_code'
]

sgql_client.lookup(product = 'core', placekeys = pk, columns = cols)
placekey location_name brands top_category sub_category naics_code street_address city region
0 222-223@65y-rxx-djv Walmart Supercenter [{'brand_id': 'SG_BRAND_04a8ca7bf49e7ecb4a32451676e929f0', 'brand_name': 'Walmart Supercenter Canada'}] General Merchandise Stores, including Warehouse Clubs and Supercenters All Other General Merchandise Stores 452319 141 Washington Avenue Ext Albany NY

Multiple Placekeys

You can perform any of the previous queries on a set of multiple Placekeys.

pks = [
    'zzw-222@8fy-fjg-b8v', # Disney World 
    'zzw-222@5z6-3h9-tsq'  # LAX
]

sgql_client.lookup(
    product = 'core',
    placekeys = pks, 
    columns = cols
)
placekey location_name brands top_category sub_category naics_code street_address city region
0 zzw-222@5z6-3h9-tsq Los Angeles International Airport [] Support Activities for Air Transportation Other Airport Operations 488119 1 World Way El Segundo CA
1 zzw-222@8fy-fjg-b8v Walt Disney World Resort [] Amusement Parks and Arcades Amusement and Theme Parks 713110 Walt Disney World Resort Orlando FL

return_type

By default, query functions in safegraphQL return pandas DataFrames. By setting return_type = 'list', you can return the JSON response object instead.

# core columns only
sgql_client.lookup(product = 'core', placekeys = pk, columns = '*', return_type = 'list')

---

[{'placekey': 'zzw-222@8fy-fjg-b8v',
  'parent_placekey': None,
  'location_name': 'Walt Disney World Resort',
  'safegraph_brand_ids': [],
  'brands': [],
  'top_category': 'Amusement Parks and Arcades',
  'sub_category': 'Amusement and Theme Parks',
  'naics_code': 713110,
  'latitude': 28.388228,
  'longitude': -81.567304,
  'street_address': 'Walt Disney World Resort',
  'city': 'Orlando',
  'region': 'FL',
  'postal_code': '32830',
  'iso_country_code': 'US',
  'phone_number': None,
  'open_hours': '{ "Mon": [["8:00", "23:00"]], "Tue": [["8:00", "23:00"]], "Wed": [["8:00", "23:00"]], "Thu": [["8:00", "23:00"]], "Fri": [["8:00", "23:00"]], "Sat": [["8:00", "23:00"]], "Sun": [["8:00", "23:00"]] }',
  'category_tags': [],
  'opened_on': None,
  'closed_on': None,
  'tracking_closed_since': '2019-07-01',
  'geometry_type': 'POLYGON'}]

save()

Export the most recently queried result. If the previous result had been a pandas DataFrame, the saved file will be a .csv. If the result had been the JSON response object, the saved file will be a .json. The default path for the exported file will be results.{csv/json}.

# saved file will be results.csv
sgql_client.lookup(product = 'core', placekeys = pk, columns = '*')
sgql_client.save()

# saved file will be results.json
sgql_client.lookup(product = 'core', placekeys = pk, columns = '*', return_type = 'list')
sgql_client.save()

# saved file will be safegraph_data.csv
sgql_client.lookup(product = 'core', placekeys = pk, columns = '*')
sgql_client.save(path = 'safegraph_data.csv')

sg_merge()

Merge safegraphQL query results with sg_merge().

core = sgql_client.lookup(product = 'core', placekeys = pks, columns = ['placekey', 'location_name', 'naics_code', 'top_category', 'sub_category'])
geo = sgql_client.lookup(product = 'geometry', placekeys = pks, columns = ['placekey', 'polygon_class', 'enclosed'])

merge_set = [core, geo]

merged = sgql_client.sg_merge(datasets = merge_set)
placekey location_name top_category sub_category naics_code polygon_class enclosed
0 zzw-222@5z6-3h9-tsq Los Angeles International Airport Support Activities for Air Transportation Other Airport Operations 488119 OWNED_POLYGON False
1 zzw-222@8fy-fjg-b8v Walt Disney World Resort Amusement Parks and Arcades Amusement and Theme Parks 713110 OWNED_POLYGON False

!! ADD SECTION ON INNER JOIN HERE ONCE ISSUE FOR NO LONGER SHOWING NULL PATTERNS ROWS HAS BEEN RESOLVED !!

sg_merge() works for JSON response objects as well.

core = sgql_client.lookup(product = 'core', placekeys = pks, columns = ['placekey', 'location_name', 'naics_code', 'top_category', 'sub_category'], return_type = 'list')
geo = sgql_client.lookup(product = 'geometry', placekeys = pks, columns = ['placekey', 'polygon_class', 'enclosed'], return_type = 'list')

merge_set = [core, geo]

merged = sgql_client.sg_merge(datasets = merge_set)

---

[{'placekey': 'zzw-222@5z6-3h9-tsq',
  'location_name': 'Los Angeles International Airport',
  'top_category': 'Support Activities for Air Transportation',
  'sub_category': 'Other Airport Operations',
  'naics_code': 488119,
  'polygon_class': 'OWNED_POLYGON',
  'enclosed': False},
 {'placekey': 'zzw-222@8fy-fjg-b8v',
  'location_name': 'Walt Disney World Resort',
  'top_category': 'Amusement Parks and Arcades',
  'sub_category': 'Amusement and Theme Parks',
  'naics_code': 713110,
  'polygon_class': 'OWNED_POLYGON',
  'enclosed': False}]

Historical Weekly Patterns

Use lookup() to query Weekly Patterns data for a Placekey from a particular date (YYYY-MM-DD format).

date = '2019-06-15'

sgql_client.lookup(
    product = 'weekly_patterns', 
    placekeys = pk, 
    date = date, 
    columns = ['placekey', 'location_name', 'date_range_start', 'date_range_end', 'raw_visit_counts']
)
placekey location_name date_range_start date_range_end raw_visit_counts
0 zzw-222@8fy-fjg-b8v Walt Disney World Resort 2019-06-10T00:00:00-04:00 2019-06-17T00:00:00-04:00 242530

Pass a list of dates to query multiple Weekly Patterns releases. Note that if two dates fall within the same release (e.g. 2019-06-15 and 2019-06-16 below), the data for the relevant week will only be returned once.

# notice the dates list contains 4 elements, but only 3 rows of data are returned
dates = ['2019-06-15', '2019-06-16', '2021-05-23', '2018-10-23']

sgql_client.lookup(
    product = 'weekly_patterns', 
    placekeys = pk, 
    date = dates, 
    columns = ['placekey', 'location_name', 'date_range_start', 'date_range_end', 'raw_visit_counts']
)
placekey location_name date_range_start date_range_end raw_visit_counts
0 zzw-222@8fy-fjg-b8v Walt Disney World Resort 2018-10-22T00:00:00-04:00 2018-10-29T00:00:00-04:00 169884
1 zzw-222@8fy-fjg-b8v Walt Disney World Resort 2019-06-10T00:00:00-04:00 2019-06-17T00:00:00-04:00 242530
2 zzw-222@8fy-fjg-b8v Walt Disney World Resort 2021-05-17T00:00:00-04:00 2021-05-24T00:00:00-04:00 323187

Pass a Python dictionary with date_range_start and date_range_end key/value pairs to query a range of Weekly Patterns releases.

dates = {'date_range_start': '2019-04-10', 'date_range_end': '2019-06-05'}

sgql_client.lookup(
    product = 'weekly_patterns', 
    placekeys = pk, 
    date = dates, 
    columns = ['placekey', 'location_name', 'date_range_start', 'date_range_end', 'raw_visit_counts']
)
placekey location_name date_range_start date_range_end raw_visit_counts
0 zzw-222@8fy-fjg-b8v Walt Disney World Resort 2019-04-15T00:00:00-04:00 2019-04-22T00:00:00-04:00 249559
1 zzw-222@8fy-fjg-b8v Walt Disney World Resort 2019-04-22T00:00:00-04:00 2019-04-29T00:00:00-04:00 248989
2 zzw-222@8fy-fjg-b8v Walt Disney World Resort 2019-04-29T00:00:00-04:00 2019-05-06T00:00:00-04:00 263878
3 zzw-222@8fy-fjg-b8v Walt Disney World Resort 2019-05-06T00:00:00-04:00 2019-05-13T00:00:00-04:00 247846
4 zzw-222@8fy-fjg-b8v Walt Disney World Resort 2019-05-13T00:00:00-04:00 2019-05-20T00:00:00-04:00 223901
5 zzw-222@8fy-fjg-b8v Walt Disney World Resort 2019-05-20T00:00:00-04:00 2019-05-27T00:00:00-04:00 212718
6 zzw-222@8fy-fjg-b8v Walt Disney World Resort 2019-05-27T00:00:00-04:00 2019-06-03T00:00:00-04:00 236622
7 zzw-222@8fy-fjg-b8v Walt Disney World Resort 2019-06-03T00:00:00-04:00 2019-06-10T00:00:00-04:00 239621

And combine the results with Core Places and Geometry using sg_merge().

dates = {'date_range_start': '2019-04-10', 'date_range_end': '2019-06-05'}

watterns = sgql_client.lookup(
    product = 'weekly_patterns', 
    placekeys = pk, 
    date = dates, 
    columns = ['placekey', 'location_name', 'date_range_start', 'date_range_end', 'raw_visit_counts']
)

core = sgql_client.lookup(product = 'core', placekeys = pk, columns = ['placekey', 'location_name', 'naics_code', 'top_category', 'sub_category'])
geo = sgql_client.lookup(product = 'geometry', placekeys = pk, columns = ['placekey', 'polygon_class', 'enclosed'])

merged = sgql_client.sg_merge(datasets = [core, geo, watterns])
placekey location_name top_category sub_category naics_code polygon_class enclosed date_range_start date_range_end raw_visit_counts
0 zzw-222@8fy-fjg-b8v Walt Disney World Resort Amusement Parks and Arcades Amusement and Theme Parks 713110 OWNED_POLYGON False 2019-04-15T00:00:00-04:00 2019-04-22T00:00:00-04:00 249559
1 zzw-222@8fy-fjg-b8v Walt Disney World Resort Amusement Parks and Arcades Amusement and Theme Parks 713110 OWNED_POLYGON False 2019-04-22T00:00:00-04:00 2019-04-29T00:00:00-04:00 248989
2 zzw-222@8fy-fjg-b8v Walt Disney World Resort Amusement Parks and Arcades Amusement and Theme Parks 713110 OWNED_POLYGON False 2019-04-29T00:00:00-04:00 2019-05-06T00:00:00-04:00 263878
3 zzw-222@8fy-fjg-b8v Walt Disney World Resort Amusement Parks and Arcades Amusement and Theme Parks 713110 OWNED_POLYGON False 2019-05-06T00:00:00-04:00 2019-05-13T00:00:00-04:00 247846
4 zzw-222@8fy-fjg-b8v Walt Disney World Resort Amusement Parks and Arcades Amusement and Theme Parks 713110 OWNED_POLYGON False 2019-05-13T00:00:00-04:00 2019-05-20T00:00:00-04:00 223901
5 zzw-222@8fy-fjg-b8v Walt Disney World Resort Amusement Parks and Arcades Amusement and Theme Parks 713110 OWNED_POLYGON False 2019-05-20T00:00:00-04:00 2019-05-27T00:00:00-04:00 212718
6 zzw-222@8fy-fjg-b8v Walt Disney World Resort Amusement Parks and Arcades Amusement and Theme Parks 713110 OWNED_POLYGON False 2019-05-27T00:00:00-04:00 2019-06-03T00:00:00-04:00 236622
7 zzw-222@8fy-fjg-b8v Walt Disney World Resort Amusement Parks and Arcades Amusement and Theme Parks 713110 OWNED_POLYGON False 2019-06-03T00:00:00-04:00 2019-06-10T00:00:00-04:00 239621

lookup_by_name()

If you don't know a location's Placekey, you can look it up by name. Note that you should use this for looking up a particular location, but if you are searching for more than one relevant location, you should use the search() function described below.

Note: When querying by location & address, it's necessary to have at least the following combination of fields to return a result:

location_name + street_address + city + region + iso_country_code
location_name + street_address + postal_code + iso_country_code
location_name + latitude + longitude + iso_country_code
location_name = "Taco Bell"
street_address = "710 3rd St"
city = "San Francisco"
region = "CA"
iso_country_code = "US"

sgql_client.lookup_by_name(
    product = 'core',
    location_name = location_name,
    street_address = street_address,
    city = city,
    region = region,
    iso_country_code = iso_country_code,
    columns = ['placekey', 'location_name', 'street_address', 'city', 'region', 'postal_code', 'iso_country_code', 'latitude', 'longitude']
)
placekey location_name latitude longitude street_address city region postal_code iso_country_code
0 224-222@5vg-7gv-d7q Taco Bell 37.7786 -122.393 710 3rd St San Francisco CA 94107 US

Search

You can search for SafeGraph POI by a variety of attributes, as described here.

Search by a single criterion, such as any convenience store POI in the SafeGraph dataset (naics_code == 445120). By default, search() returns only the first 20 results.

naics_code = 445120

search_result = sgql_client.search(product = 'core', columns = ['placekey', 'location_name', 'street_address', 'city', 'region', 'iso_country_code'], naics_code = naics_code)
placekey location_name street_address city region iso_country_code
0 zzw-223@646-9rk-nqz Cash & Dash 7 701 Highway 701 N Loris SC US
1 222-222@63r-tqr-zj9 7-Eleven 8708 Liberia Ave Manassas VA US
2 zzy-222@4hf-pq3-w6k Londis 18 & 22 & 26 Winster Mews, Gamesley Derbyshire GB
3 222-223@63v-c97-hnq Circle K 1608 East Ave Akron OH US
4 zzw-222@8dj-n5s-2hq 7-Eleven 13150 S US Highway 41 Gibsonton FL US
5 224-222@66b-2d2-rhq Depanneur 7 Jours 6024 Avenue De Darlington Montreal QC CA
6 222-222@5pc-4d2-8n5 Kwik Trip 1549 Madison Ave Mankato MN US
7 22c-222@5z5-3r9-8jv 7-Eleven 5000 Wilshire Blvd Los Angeles CA US
8 223-223@5z5-qcd-wc5 7-Eleven 6401 Mission Gorge Rd San Diego CA US
9 zzw-223@5r8-2cq-nbk Casey's General Stores 2604 N Range Line Rd Joplin MO US
10 zzw-223@8gn-kc9-5mk Circle K 101 N Gilmer Ave Lanett AL US
11 zzw-222@5q9-b99-vcq Circle K 7530 Village Square Dr Castle Pines CO US
12 zzy-225@3x7-z8z-qj9 Circle K 100 Twelfth Avenue South West Slave Lake AB CA
13 223-223@8sx-zcv-grk Circle K 901 Voss Ave Odem TX US
14 224-222@5wb-sdq-r8v Circle K 5301 W Canal Dr Kennewick WA US
15 zzw-226@64h-vj9-mrk 21st Street Deli 222 W 21st St Ste J Norfolk VA US
16 22k-222@627-wdk-z9f Victory Meat Center 8506 Bay Pkwy Brooklyn NY US
17 zzy-222@5pm-6rj-4n5 Quick Mart 129 E Hill St Waynesboro TN US
18 224-222@3wz-4kr-rc5 7-Eleven 1704 61st Street South East Calgary AB CA
19 223-222@5pb-b7m-5s5 Casey's General Stores 907 13th St N Humboldt IA US

Search by multiple criteria, such as Sheetz locations in Pennsylvania.

brand = 'Sheetz'
region = 'PA'

search_result = sgql_client.search(product = 'core', columns = ['placekey', 'location_name', 'street_address', 'city', 'region', 'iso_country_code'], brand = brand, region = region)

search_result.head()
placekey location_name street_address city region iso_country_code
0 225-222@63p-wtm-8qf Sheetz 24578 Route 35 N Mifflintown PA US
1 224-222@63p-d8d-dgk Sheetz 330 Westminster Dr Kenmar PA US
2 223-222@63s-x95-c89 Sheetz 420 N Baltimore Ave Mount Holly Springs PA US
3 223-222@63d-3y3-3wk Sheetz 4701 William Penn Hwy Murrysville PA US
4 227-222@63p-tv5-brk Sheetz 8711 Woodbury Pike East Freedom PA US

search() works for Geometry, Monthly Patterns, and Weekly Patterns as well.

brand = 'Sheetz'
region = 'PA'
date = '2021-07-04'

search_result = sgql_client.search(product = 'weekly_patterns', columns = ['placekey', 'location_name', 'raw_visit_counts'], date = date, brand = brand, region = region)
placekey location_name raw_visit_counts
0 225-222@63p-wtm-8qf Sheetz 338
1 224-222@63p-d8d-dgk Sheetz 619
2 223-222@63s-x95-c89 Sheetz 241
3 223-222@63d-3y3-3wk Sheetz 705
4 227-222@63p-tv5-brk Sheetz 564

Change the max_results parameter to request more than the default 20 results.

brand = 'Sheetz'
region = 'PA'
max_results = 200

search_result = sgql_client.search(product = 'core', columns = ['placekey', 'location_name', 'street_address', 'city', 'region', 'iso_country_code'], brand = brand, region = region, max_results = max_results)
placekey location_name street_address city region iso_country_code
0 225-222@63p-wtm-8qf Sheetz 24578 Route 35 N Mifflintown PA US
1 222-222@63p-bjm-xnq Sheetz 270 Route 61 S Schuylkill Haven PA US
2 228-222@63t-p3s-zzz Sheetz 107 Franklin St Slippery Rock PA US
3 zzw-222@63s-xr7-49z Sheetz 6054 Carlisle Pike Mechanicsburg PA US
4 zzw-222@63s-9nq-9zz Sheetz 3200 Cape Horn Rd Red Lion PA US
...
195 zzw-222@63n-xgm-zpv Sheetz 7775 N Route 220 Hwy Linden PA US
196 222-222@63s-xgf-cyv Sheetz 5201 Simpson Ferry Rd Mechanicsburg PA US
197 222-222@63p-8qd-fcq Sheetz 1550 State Rd Duncannon PA US
198 226-222@63s-xqc-ty9 Sheetz 1720 Harrisburg Pike Carlisle PA US
199 227-222@63d-77y-dgk Sheetz 1297 Washington Pike Bridgeville PA US

Change the after_result_number parameter if you want to skip the first few results. For example, maybe you already searched for the first 2 Sheetz results in PA, and you're interested in the results after that.

brand = 'Sheetz'
region = 'PA'
max_results = 200
after_result_number = 2

search_result = sgql_client.search(product = 'core', columns = ['placekey', 'location_name', 'street_address', 'city', 'region', 'iso_country_code'], brand = brand, region = region, max_results = max_results, after_result_number = after_result_number)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

safegraphQL-0.5.23.tar.gz (36.4 kB view details)

Uploaded Source

Built Distribution

safegraphQL-0.5.23-py3-none-any.whl (19.3 kB view details)

Uploaded Python 3

File details

Details for the file safegraphQL-0.5.23.tar.gz.

File metadata

  • Download URL: safegraphQL-0.5.23.tar.gz
  • Upload date:
  • Size: 36.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.8.5

File hashes

Hashes for safegraphQL-0.5.23.tar.gz
Algorithm Hash digest
SHA256 371b6735ff90ae9653714e458980b45731b421762c8a5d01f535eb534f3ba824
MD5 72ceed0554bc506a0a77e4549c698d54
BLAKE2b-256 5f6e08367fd2134ce163d2cbbf8320e19ea394cbffa077ea12c2b3ad13697c8c

See more details on using hashes here.

File details

Details for the file safegraphQL-0.5.23-py3-none-any.whl.

File metadata

  • Download URL: safegraphQL-0.5.23-py3-none-any.whl
  • Upload date:
  • Size: 19.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.8.5

File hashes

Hashes for safegraphQL-0.5.23-py3-none-any.whl
Algorithm Hash digest
SHA256 7fc3e4d5df2d966dc1c21ef30cd92834bd16cdb3cc615e108c859a410bf16c64
MD5 e5a8bb48cf1d0da650fb246cfec35742
BLAKE2b-256 a7ab3b0d035d130876fca82f3afc1409b638ed30231f2cc3a2c3c210df32939e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page