Skip to main content

SAS Deep Learning Interface

Project description

What is DLPy?

DLPy is a high-level package for the Python APIs created for the SAS Viya 3.3 (and newer) Deep Learning and Image action sets. DLPy provides a convenient way to perform deep learning image processing. DLPy uses a familiar Keras-style Python API to access and utilize SAS Viya Deep Learning actions in the SAS Cloud Analytic Services (CAS) environment. Users who are new to SAS CAS programming, but are familiar with other open-source deep learning packages, can use the intuitive DLPy interface to run Keras code (with very few modifications) to smoothly access SAS analytic and deep learning actions in the SAS CAS environment.

The DLPy package is mainly designed for image classification problems using Convolutional Neural Network (CNN) models. DLPy currently enables GPU support, but on an experimental basis. Support for Recurrent Neural Networks (RNNs) and object detection is under development, and will be added to the DLPy package in future releases.

Installing DLPy

SAS provides APIs designed for use with Python 2.7 and Python 3.4+ at https://github.com/sassoftware/python-dlpy/releases/.

Note: To enable graphic visualizations of DLPy deep learning models, it is recommended that you download and install the open source graph visualization software called Graphviz. Graphviz is available at https://www.graphviz.org/download/.

To install DLPy, open an operating system console, navigate to the folder location where you downloaded DLPy, and submit the following:

pip install sas-dlpy

Documentation

The API documentation is located at https://sassoftware.github.io/python-dlpy/.

Getting Started with DLPy

Before you can use the DLPy package, you will need a running SAS CAS server and the SWAT (SAS Scripting Wrapper for Analytics Transfer) package. SWAT enables you to access and interact with SAS CAS. The SWAT package can connect to the binary port or the HTTP port of your CAS host.

In addition to the CAS host and port information, you need a CAS userID and password to connect. See your system administrator for details if you do not have a CAS account.

To connect to a CAS server, import SWAT and use the swat.CAS class to create a connection:

>>> import swat
>>> sess = swat.CAS('cloud.example.com', 5570)

Next, import the DLPy package, and then build a simple convolutional neural network (CNN) model.

Import DLPy model functions:

>>> from dlpy import Model, Sequential

Import DLPy layer functions:

>>> from dlpy.layers import *

Import DLPy application functions:

>>> from dlpy.applications import *

Use DLPy to create a sequential model and name it ‘Simple_CNN’:

>>> model1 = Sequential(sess, model_table = 'Simple_CNN')

Now define an input layer to add to model1:

# The input shape contains RGB images (3 channels)
# The model images are 224 px in height and 224 px in width

>>> model1.add(InputLayer(3,224,224))

NOTE: Input layer added.

Now, add a 2D convolution layer and a pooling layer:

# Add 2-Dimensional Convolution Layer to model1
# that has 8 filters and a kernel size of 7.

>>> model1.add(Conv2d(8,7)

NOTE: Convolutional layer added.

# Add Pooling Layer of size 2

>>> model1.add(Pooling(2))

NOTE: Pooling layer added.

Now, add an additional pair of 2D convolution and pooling layers:

# Add another 2D convolution Layer that has 8 filters
# and a kernel size of 7

>>> model1.add(Conv2d(8,7)

NOTE: Convolutional layer added.

# Add a pooling layer of size 2 to # complete the second pair of layers.

>>> model1.add(Pooling(2))

NOTE: Pooling layer added.

Add a fully connected layer:

# Add Fully-Connected Layer with 16 units

>>> model1.add(Dense(16))

NOTE: Fully-connected layer added.

Finally, add the output layer:

# Add an output layer that has 2 nodes and uses
# the Softmax activation function

>>> model1.add(OutputLayer(act='softmax',n=2))

NOTE: Output layer added.
NOTE: Model compiled successfully

Display a print summary of the table:

# Display a brief summary table of model1

>>> model1.print_summary()

*==================*===============*========*============*=================*======================*
|   Layer (Type)   |  Kernel Size  | Stride | Activation |   Output Size   | Number of Parameters |
*------------------*---------------*--------*------------*-----------------*----------------------*
| Data(Input)      |     None      |  None  |    None    |  (224, 224, 3)  |        0 / 0         |
| Conv1_1(Convo.)  |    (7, 7)     |   1    |    Relu    |  (224, 224, 8)  |       1176 / 8       |
| Pool1(Pool)      |    (2, 2)     |   2    |    Max     |  (112, 112, 8)  |        0 / 0         |
| Conv2_1(Convo.)  |    (7, 7)     |   1    |    Relu    |  (112, 112, 8)  |       3136 / 8       |
| Pool2(Pool)      |    (2, 2)     |   2    |    Max     |   (56, 56, 8)   |        0 / 0         |
| FC1(F.C.)        |  (25088, 16)  |  None  |    Relu    |       16        |     401408 / 16      |
| Output(Output)   |    (16, 2)    |  None  |  Softmax   |        2        |        32 / 2        |
*==================*===============*========*============*=================*======================*
|Total Number of Parameters: 405,786                                                              |
*=================================================================================================*

# Use Graphviz to display model network

>>> model1.plot_network()

<graphviz.dot.Digraph at 0x28d5cee32b0>
doc/images/model1_network.png

Resources

SAS SWAT for Python

Python

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sas-dlpy-0.6.1.tar.gz (65.2 kB view details)

Uploaded Source

File details

Details for the file sas-dlpy-0.6.1.tar.gz.

File metadata

  • Download URL: sas-dlpy-0.6.1.tar.gz
  • Upload date:
  • Size: 65.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for sas-dlpy-0.6.1.tar.gz
Algorithm Hash digest
SHA256 56799546f2d8b6cee179f42e21fde35f951ed643125784ea43ff78dfd3fc31db
MD5 f30d2da74484aea20bc55c29fc363c30
BLAKE2b-256 dd094665d53ec50dfad0955a952ead04151874e6e90c10b7ebe4f283efc495ee

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page