Skip to main content

Autograd and XLA for S-parameters

Project description

SAX

S + Autograd + XLA

SAX LOGO

Autograd and XLA for S-parameters - a scatter parameter circuit simulator and optimizer for the frequency domain based on JAX.

The simulator was developed for simulating Photonic Integrated Circuits but in fact is able to perform any S-parameter based circuit simulation. The goal of SAX is to be a thin wrapper around JAX with some basic tools for S-parameter based circuit simulation and optimization. Therefore, SAX does not define any special datastructures and tries to stay as close as possible to the functional nature of JAX. This makes it very easy to get started with SAX as you only need functions and standard python dictionaries. Let's dive in...

Quick Start

Full Quick Start page - Documentation.

Let's first import the SAX library, along with JAX and the JAX-version of numpy:

import sax
import jax
import jax.numpy as jnp

Define a model function for your component. A SAX model is just a function that returns an 'S-dictionary'. For example a directional coupler:

def coupler(coupling=0.5):
    kappa = coupling**0.5
    tau = (1-coupling)**0.5
    sdict = sax.reciprocal({
        ("in0", "out0"): tau,
        ("in0", "out1"): 1j*kappa,
        ("in1", "out0"): 1j*kappa,
        ("in1", "out1"): tau,
    })
    return sdict

coupler(coupling=0.3)
{('in0', 'out0'): 0.8366600265340756,
 ('in0', 'out1'): 0.5477225575051661j,
 ('in1', 'out0'): 0.5477225575051661j,
 ('in1', 'out1'): 0.8366600265340756,
 ('out0', 'in0'): 0.8366600265340756,
 ('out1', 'in0'): 0.5477225575051661j,
 ('out0', 'in1'): 0.5477225575051661j,
 ('out1', 'in1'): 0.8366600265340756}

Or a waveguide:

def waveguide(wl=1.55, wl0=1.55, neff=2.34, ng=3.4, length=10.0, loss=0.0):
    dwl = wl - wl0
    dneff_dwl = (ng - neff) / wl0
    neff = neff - dwl * dneff_dwl
    phase = 2 * jnp.pi * neff * length / wl
    amplitude = jnp.asarray(10 ** (-loss * length / 20), dtype=complex)
    transmission =  amplitude * jnp.exp(1j * phase)
    sdict = sax.reciprocal({("in0", "out0"): transmission})
    return sdict

waveguide(length=100.0)
{('in0', 'out0'): 0.97953-0.2013j, ('out0', 'in0'): 0.97953-0.2013j}

These component models can then be combined into a circuit:

mzi, _ = sax.circuit(
    netlist={
        "instances": {
            "lft": coupler,
            "top": waveguide,
            "rgt": coupler,
        },
        "connections": {
            "lft,out0": "rgt,in0",
            "lft,out1": "top,in0",
            "top,out0": "rgt,in1",
        },
        "ports": {
            "in0": "lft,in0",
            "in1": "lft,in1",
            "out0": "rgt,out0",
            "out1": "rgt,out1",
        },
    }
)

type(mzi)
function

As you can see, the mzi we just created is just another component model function! To simulate it, call the mzi function with the (possibly nested) settings of its subcomponents. Global settings can be added to the 'root' of the circuit call and will be distributed over all subcomponents which have a parameter with the same name (e.g. 'wl'):

wl = jnp.linspace(1.53, 1.57, 1000)
result = mzi(wl=wl, lft={'coupling': 0.3}, top={'length': 200.0}, rgt={'coupling': 0.8})

plt.plot(1e3*wl, jnp.abs(result['in0', 'out0'])**2, label="in0->out0")
plt.plot(1e3*wl, jnp.abs(result['in0', 'out1'])**2, label="in0->out1", ls="--")
plt.xlabel("λ [nm]")
plt.ylabel("T")
plt.grid(True)
plt.figlegend(ncol=2, loc="upper center")
plt.show()

output

Those are the basics. For more info, check out the full SAX Quick Start page or the rest of the Documentation.

Installation

You can install SAX with pip:

pip install sax

If you want to be able to run all the example notebooks, you'll need python>=3.10 and you should install the development version of SAX:

pip install 'sax[dev]'

License

Copyright © 2023, Floris Laporte, Apache-2.0 License

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sax-0.14.0.tar.gz (35.8 kB view details)

Uploaded Source

Built Distribution

sax-0.14.0-py3-none-any.whl (37.1 kB view details)

Uploaded Python 3

File details

Details for the file sax-0.14.0.tar.gz.

File metadata

  • Download URL: sax-0.14.0.tar.gz
  • Upload date:
  • Size: 35.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for sax-0.14.0.tar.gz
Algorithm Hash digest
SHA256 08139e8a3654ccb7dbdefdac9c92dce9119cd7dd1d8f5b3aa6615e5def80d79d
MD5 71b02bd224ded1ad0918d6201826ab3b
BLAKE2b-256 50cbbddd8e10c69eca56cd1a746003b6da2c42e795659aa9979b7b48c3ff6c61

See more details on using hashes here.

File details

Details for the file sax-0.14.0-py3-none-any.whl.

File metadata

  • Download URL: sax-0.14.0-py3-none-any.whl
  • Upload date:
  • Size: 37.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for sax-0.14.0-py3-none-any.whl
Algorithm Hash digest
SHA256 4ea53c788b6edf2d6db6eaab63dfc54713dcee716a3dbfb7a4f02806298d9bb5
MD5 39d944f26d80f13783ae6e9256230350
BLAKE2b-256 56c24767cc94268c61c8b187e538716caa0aa406023a4a3301ce817205dc21b3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page