scevow: Excellent optimization of variant function mapping through weighted random walks at single-cell resolution
Project description
scevow
scevow: Excellent optimization of variant function mapping through weighted random walks at single-cell resolution
scevow: 通过单细胞分辨率下的加权随机游走对突变功能映射进行优化
1. 介绍
2. 上传
upload
test
python3 -m build
twine check dist/*
twine upload --repository testpypi dist/*
production
python3 -m build
twine check dist/*
twine upload dist/*
3. 使用
vim ~/.bashrc
export OMP_NUM_THREADS=1
export OPENBLAS_NUM_THREADS=1
source ~/.bashrc
test
pip3 install -r requirements.txt -i http://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com
pip3 install scLift -i https://test.pypi.org/simple/
production
pip3 install scLift
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
sclift-0.0.55.tar.gz
(61.2 kB
view details)
Built Distribution
scLift-0.0.55-py3-none-any.whl
(76.0 kB
view details)
File details
Details for the file sclift-0.0.55.tar.gz
.
File metadata
- Download URL: sclift-0.0.55.tar.gz
- Upload date:
- Size: 61.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0e4c0d889c17d87c9e03724eaea85f8601c82bc008e981e3d0c6943eaa11766e |
|
MD5 | 679ecfc5256c9caf83e7f969cf0d2ff9 |
|
BLAKE2b-256 | 316e995d3e432cf6f4a48cd80a01ca169a1074a6c7c95dc086bb53d0ae832b1c |
File details
Details for the file scLift-0.0.55-py3-none-any.whl
.
File metadata
- Download URL: scLift-0.0.55-py3-none-any.whl
- Upload date:
- Size: 76.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8ba7a6c22a2b2827dc4f955b73e7534146c9e6176011b93b7bdc99c9b99a05f7 |
|
MD5 | 03eb53612c167a13171f21a2ace9e30c |
|
BLAKE2b-256 | ed2a84ba9ef227b3e84d09ba00d4d1ad3a97f984b38d19374ccbafe3fe29cfc0 |