Skip to main content

Python library for multidimensional analysis

Project description

scientisttools : Python library for multidimensional analysis

About scientisttools

scientisttools is a Python package dedicated to multivariate Exploratory Data Analysis.

Why use scientisttools?

  • It performs classical principal component methods :
    • Principal Components Analysis (PCA)
    • Principal Components Analysis with partial correlation matrix (PPCA)
    • Weighted Principal Components Analysis (WPCA)
    • Expectation-Maximization Principal Components Analysis (EMPCA)
    • Exploratory Factor Analysis (EFA)
    • Classical Multidimensional Scaling (CMDSCALE)
    • Metric and Non - Metric Multidimensional Scaling (MDS)
    • Correspondence Analysis (CA)
    • Multiple Correspondence Analysis (MCA)
    • Factor Analysis of Mixed Data (FAMD)
    • Multiple Factor Analysis (MFA)
  • In some methods, it allowed to add supplementary informations such as supplementary individuals and/or variables.
  • It provides a geometrical point of view, a lot of graphical outputs.
  • It provides efficient implementations, using a scikit-learn API.

Those statistical methods can be used in two ways :

  • as descriptive methods ("datamining approach")
  • as reduction methods in scikit-learn pipelines ("machine learning approach")

scientisttools also performs some algorithms such as clustering analysis and discriminant analysis.

  • Clustering analysis:
    • Hierarchical Clustering on Principal Components (HCPC)
    • Variables Hierarchical Clustering Analysis (VARHCA)
    • Variables Hierarchical Clustering Analysis on Principal Components (VARHCPC)
    • Categorical Variables Hierarchical Clustering Analysis (CATVARHCA)
  • Discriminant Analysis
    • Canonical Discriminant Analysis (CANDISC)
    • Linear Discriminant Analysis (LDA)
    • Discriminant with qualitatives variables (DISQUAL)
    • Discriminant Correspondence Analysis (DISCA)
    • Discriminant with mixed data (DISMIX)
    • Stepwise Discriminant Analysis (STEPDISC) (only backward elimination is available).

Notebooks are availabled.

Installation

Dependencies

scientisttools requires

numpy>=1.23.5
matplotlib>=3.5.3
scikit-learn>=1.2.2
pandas>=1.5.3
mapply>=0.1.21
plotnine>=0.10.1
plydata>=0.4.3
pingouin>=0.5.3
scientistmetrics>=0.0.3
ggcorrplot>=0.0.2
factor_analyzer>=0.5.0
networkx>=3.2.1
more_itertools>=10.1.0

User installation

You can install scientisttools using pip :

pip install scientisttools

Tutorial are available

https://github.com/enfantbenidedieu/scientisttools/blob/master/ca_example2.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/classic_mds.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/efa_example.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/famd_example.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/ggcorrplot.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/mca_example.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/mds_example.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/partial_pca.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/pca_example.ipynb

Author

Duvérier DJIFACK ZEBAZE (duverierdjifack@gmail.com)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scientisttools-0.1.2.tar.gz (18.8 MB view details)

Uploaded Source

Built Distribution

scientisttools-0.1.2-py3-none-any.whl (218.0 kB view details)

Uploaded Python 3

File details

Details for the file scientisttools-0.1.2.tar.gz.

File metadata

  • Download URL: scientisttools-0.1.2.tar.gz
  • Upload date:
  • Size: 18.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.5

File hashes

Hashes for scientisttools-0.1.2.tar.gz
Algorithm Hash digest
SHA256 ab531aa529d76d95820ea2938533514f18351ef9973d4844a6dba03871a1fba7
MD5 9dc1930d2872de10aa116a6d36cea536
BLAKE2b-256 7e93ecda4b7be1400c5ab82b18b362b1e4ed9b5c367d2af022861b7027686890

See more details on using hashes here.

File details

Details for the file scientisttools-0.1.2-py3-none-any.whl.

File metadata

File hashes

Hashes for scientisttools-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 bb498b9b5c58014ddbd52ac38ce92575c7cad8afad16592149f8dfe3169c094d
MD5 55c5e156af0f17cf69bbc46dfd16e740
BLAKE2b-256 3381989d3b206637ac7b055c8e240fc5ee1d8756c4c6d3ba20b3a3d2d046f36e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page