Skip to main content

Automatic finite difference discretization for 1D PDE with fast temporal solvers.

Project description

Scikit-fdiff / skfdiff

The full documentation is available on read the doc.

DOI DOI

Installation

External requirements

This library is written for python >= 3.7.

On v0.7.0, it is possible to choose between numpy and numba (which provide similar features). numpy will be slower but with no compilation time, which is handy for testing and prototyping. On other hand, numba use a JIT compilation, and give access to faster and parallized routines in the cost of an extra dependency and a warm-up time.

via PyPI

pip install scikit-fdiff[numba,interactive]

will install the package and

pip install scikit-fdiff --upgrade

will update an old version of the library.

via github

You can install the latest version of the library using pip and the github repository:

pip install git+https://gitlab.com/celliern/scikit-fdiff

Introduction

Rational

The aim of this library is to have a (relatively) easy way to write transient systems of N-dimensional partial differential equations with finite difference discretization and fast temporal solvers.

The main two parts of the library are:

  • symbolic tools defining the spatial discretization, with boundary taking into account in a separated part
  • a fast temporal solver written in order to use the sparsity of the finite difference method to reduce the memory and CPU usage during the solving

Moreover, extra tools are provided and the library is written in a modular way, allowing an easy extension of these different parts (see the plug-in module of the library.)

The library fits well with an interactive usage (in a jupyter notebook). The dependency list is actually larger, but on-going work target a reduction of the stack complexity.

Model writing

All the models are written as function generating the F vector and the Jacobian matrix of the model defined as dtU = F(U).

The symbolic model is written as a simple mathematic equation. For example, a diffusion advection model can be written as:

from skfdiff import Model

equation_diff = "k * dxxU - c * dxU"
dependent_var = "U"
physical_parameters = ["k", "c"]

model = Model(equation_diff, dependent_var,
              physical_parameters)

Toy examples (more ambitious one are in the doc)

1D advection / diffusion system, Dirichlet boundary

>>> import pylab as pl
>>> import numpy as np
>>> from skfdiff import Model, Simulation

>>> model = Model("k * dxxU - c * dxU",
...               "U(x)", ["k", "c"],
...               boundary_conditions={("U", "x"): ("dirichlet", "dirichlet")}
...               )

>>> x, dx = np.linspace(0, 1, 200, retstep=True)
>>> U = np.cos(2 * np.pi * x * 5)

# The fields are ``xarray.Dataset`` objects, and all the
# tools / methods available in the ``xarray`` lib can be
# applied to the skfdiff.Fields.
>>> fields = model.Fields(x=x, U=U, k=0.001, c=0.3)

# fix the boundary values for the dirichlet condition
>>> fields["U"][0] = 1
>>> fields["U"][-1] = 0

>>> t = 0
>>> dt = 5E-1
>>> tmax = 2.5

>>> simul = Simulation(model, fields, dt, tmax=tmax)

# The containers are in-memory or persistant
# xarray Dataset with all or some time-steps available.
>>> container = simul.attach_container()
>>> simul.run()
(2.5, <xarray.Dataset>
 Dimensions:  (x: 200)
 Coordinates:
   * x        (x) float64 0.0 ... 1.0
 Data variables:
     U        (x) float64 ...
     k        float64 0.001
     c        float64 0.3)

>>> for t in container.data.t:
...     fig = pl.figure()
...     plot = container.data["U"].sel(t=t).plot()

2D advection / diffusion system, mixed robin / periodic boundary

>>> import pylab as pl
>>> import numpy as np
>>> from skfdiff import Model, Simulation

# some specialized scheme as the upwind scheme as been implemented.
# as the problem as a strong advective component, we can use it
# to reduce the numerical instabilities.
# the dirichlet condition mean that the boundary will stay fix,
# keeping the initial value.
>>> model = Model("k * (dxxU + dyyU) - (upwind(cx, U, x, 2) + upwind(cy, U, y, 2))",
...               "U(x, y)", ["k", "cx", "cy"],
...               boundary_conditions={("U", "x"): ("dxU - (U - sin(y) * cos(t))", "dxU - 5"),
...                                    ("U", "y"):  "periodic"})

>>> x = np.linspace(0, 10, 56)
>>> y = np.linspace(-np.pi, np.pi, 32)

>>> U = np.zeros((x.size, y.size))
>>> fields = model.Fields(x=x, y=y, U=U, k=0.001, cx=0.8, cy=0.3)

>>> dt = 1.
>>> tmax = 15.

>>> simul = Simulation(model, fields, dt, tmax=tmax, tol=5E-1)
>>> container = simul.attach_container()

>>> simul.run()
(15.0, <xarray.Dataset>
 Dimensions:  (x: 56, y: 32)
 Coordinates:
   * x        (x) float64 0.0 ... 10.0
   * y        (y) float64 -3.142 ... 3.142
 Data variables:
     U        (x, y) float64 ...
     k        float64 0.001
     cx       float64 0.8
     cy       float64 0.3)

>>> for t in np.linspace(0, tmax, 5):
...     fig = pl.figure()
...     plot = container.data["U"].sel(t=t, method="nearest").plot()

Contributing

See the contribute section of the doc.

Code of Conduct

See the dedicated page.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-fdiff-0.7.0.tar.gz (44.5 kB view details)

Uploaded Source

Built Distribution

scikit_fdiff-0.7.0-py3-none-any.whl (52.3 kB view details)

Uploaded Python 3

File details

Details for the file scikit-fdiff-0.7.0.tar.gz.

File metadata

  • Download URL: scikit-fdiff-0.7.0.tar.gz
  • Upload date:
  • Size: 44.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/3.10.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.7.10

File hashes

Hashes for scikit-fdiff-0.7.0.tar.gz
Algorithm Hash digest
SHA256 05d39e607c553cbc3b3ec328b84a6f2665291cd095ef94ae8479819ad4fbe3ec
MD5 90931cb9ec9bdca2cd8f65472d414206
BLAKE2b-256 6e2fdf50533f936336ed31cb609f78f331153526518a7e516eff047da9f5882f

See more details on using hashes here.

File details

Details for the file scikit_fdiff-0.7.0-py3-none-any.whl.

File metadata

  • Download URL: scikit_fdiff-0.7.0-py3-none-any.whl
  • Upload date:
  • Size: 52.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/3.10.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.7.10

File hashes

Hashes for scikit_fdiff-0.7.0-py3-none-any.whl
Algorithm Hash digest
SHA256 55121067c0cc7ea2cee9344918c403dba5acbdeb3d990aa41aa39340f54fbe2d
MD5 604962fceb66cc2338a19b2034fea3e1
BLAKE2b-256 9a46ae0f32a372ad2da3269be7ad65e08ebeeacf8efcb0d216e87a814e0ce19c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page