Skip to main content

Library for Multi-criteria Decision Aid Methods

Project description

scikit-mcda

It is a python library made to provide multi-criteria decision aid for developers and operacional researchers.

Scikit-mcda provides an easy way to apply several popular decision-making methods. It can be used as part of your development or for analytical experiments using notebooks like Jupyter, colab or kaggle. The package is available on the Pypi allowing installation by pip install scikit-mcda command.

Some methods available:

DMUU

  • laplace, hurwicz, maximax, maximin, minimax-regret ...

MCDA

  • Weighted Sum Model (WSM), Weighted Product Model (WPM) , Weighted Aggregated Sum Product Assessment (WASPAS), TOPSIS ...

Definition of criteria weights

  • Manually, Entropy, Ranking Methods ...

Nomalization

  • Z score, MinMax, Logistic, Max, Sum and RootSumSquared

Scikit-mcda is free to use for personal, commercial and academic projects, always respecting the terms of the Apache 2.0 License. Do not forget to refer to this Library when it is used in your experiments, lectures, presentations, classes and research papers. The reference must follow this citation format.

(HORTA, 2021)

HORTA, Antonio (2021). Scikit-mcda: The Python library for multi-criteria decision aid. 
Version 0.21. [opensource], 17 jan. 2021. Available in: https://gitlab.com/cybercrafter/scikit-mcda. 
Acessed in: 17 jan. 2021.

It's a project made by Cybercrafter® ajhorta@cybercrafter.com.br

Module for Decision-making Under Uncertainty (DMUU)

DMUU: Class Module for Decision-making Under Uncertainty

Attributes:

df_original = DataFrame
df_calc = DataFrame
decision = {"alternative":,
            "index":,
            "value": ,
            "criteria": ,
            "result": ,
            "type_dm": "DMUU",
            "hurwicz_coeficient":}

Criteria Methods:

  • maximax()
  • maximin()
  • laplace()
  • minimax_regret()
  • hurwicz(coef)

Properties

  • pretty_original(tablefmt='psql')
  • pretty_calc(tablefmt='psql')
  • pretty_decision(tablefmt='psql')

tablefmt: "psql" or "latex" or "html"

Methods:

  • dataframe(alt_data, alt_labels=[], state_labels=[])
  • decision_making(dmuu_criteria_list=[])

Quick Start for DMUU

from scikitmcda.dmuu import DMUU

# Defining labels for Alternatives and States")

dmuu = DMUU()

dmuu.dataframe([[5000, 2000, 100],
                [50, 50, 500]],
                ["ALT_A", "ALT_B"],
                ["STATE A", "STATE B", "STATE C"]
                )

print(dmuu.pretty_original())
+----+----------------+-----------+-----------+-----------+
|    | alternatives   |   STATE A |   STATE B |   STATE C |
|----+----------------+-----------+-----------+-----------|
|  0 | ALT_A          |      5000 |      2000 |       100 |
|  1 | ALT_B          |        50 |        50 |       500 |
+----+----------------+-----------+-----------+-----------+

# Specifying the criteria method

dmuu.minimax_regret()

print(dmuu.pretty_calc())
+----+----------------+-----------+-----------+-----------+------------------+
|    | alternatives   |   STATE A |   STATE B |   STATE C | minimax-regret   |
|----+----------------+-----------+-----------+-----------+------------------|
|  0 | ALT_A          |      5000 |      2000 |       100 | (400, 1)         |
|  1 | ALT_B          |        50 |        50 |       500 | (4950, 0)        |
+----+----------------+-----------+-----------+-----------+------------------+

print(dmuu.pretty_decision())
+---------------+---------+---------+----------------+-------------------------------+-----------+----------------------+
| alternative   |   index |   value | criteria       | result                        | type_dm   | hurwicz_coeficient   |
|---------------+---------+---------+----------------+-------------------------------+-----------+----------------------|
| ALT_A         |       0 |     400 | minimax-regret | {'ALT_A': 400, 'ALT_B': 4950} | DMUU      |                      |
+---------------+---------+---------+----------------+-------------------------------+-----------+----------------------+

# Many crietria methods

dmuu.decision_making([dmuu.maximax(), dmuu.maximin(), dmuu.hurwicz(0.8), dmuu.minimax_regret()])

print(dmuu.pretty_calc())
+----+----------------+-----------+-----------+-----------+------------------+-----------+-----------+------------------+
|    | alternatives   |   STATE A |   STATE B |   STATE C | minimax-regret   | maximax   | maximin   | hurwicz          |
|----+----------------+-----------+-----------+-----------+------------------+-----------+-----------+------------------|
|  0 | ALT_A          |      5000 |      2000 |       100 | (400, 1)         | (5000, 1) | (100, 1)  | (4020.0, 1, 0.8) |
|  1 | ALT_B          |        50 |        50 |       500 | (4950, 0)        | (500, 0)  | (50, 0)   | (410.0, 0, 0.8)  |
+----+----------------+-----------+-----------+-----------+------------------+-----------+-----------+------------------+

print(dmuu.pretty_decision())
+---------------+---------+---------+----------------+-----------------------------------+-----------+----------------------+
| alternative   |   index |   value | criteria       | result                            | type_dm   | hurwicz_coeficient   |
|---------------+---------+---------+----------------+-----------------------------------+-----------+----------------------|
| ALT_A         |       0 |    5000 | maximax        | {'ALT_A': 5000, 'ALT_B': 500}     | DMUU      |                      |
| ALT_A         |       0 |     100 | maximin        | {'ALT_A': 100, 'ALT_B': 50}       | DMUU      |                      |
| ALT_A         |       0 |    4020 | hurwicz        | {'ALT_A': 4020.0, 'ALT_B': 410.0} | DMUU      | 0.8                  |
| ALT_A         |       0 |     400 | minimax-regret | {'ALT_A': 400, 'ALT_B': 4950}     | DMUU      |                      |
+---------------+---------+---------+----------------+-----------------------------------+-----------+----------------------+

dmuu.calc_clean()
print(dmuu.pretty_calc())
+----+----------------+-----------+-----------+-----------+
|    | alternatives   |   STATE A |   STATE B |   STATE C |
|----+----------------+-----------+-----------+-----------|
|  0 | ALT_A          |      5000 |      2000 |       100 |
|  1 | ALT_B          |        50 |        50 |       500 |
+----+----------------+-----------+-----------+-----------+

Module for Multi-Criteria Decision Aid (MCDA)

MCDA: Class Module for Multi-Criteria Decision-Aid

Attributes:

  • df_original
  • weights
  • signals
  • df_normalized
  • df_weighted
  • df_pis
  • df_nis
  • df_distances
  • df_decision

MCDA basis methods:

  • dataframe(alt_data, alt_labels=[], state_labels=[])
  • set_signals([MIN, MIN, MAX])
  • set_normalization(default=RootSumSquared_)

Normalization constants: ZScore_, MinMax_, Logistic_, Max_, Sum_, RootSumSquared_

MCDA weights determination methods:

  • set_weights_manually([])
  • set_weights_by_entropy(normalization_method_for_entropy=Default)
  • set_weights_by_ranking_A()
  • set_weights_by_ranking_B()
  • set_weights_by_ranking_B_POW(default=0)
  • set_weights_by_ranking_C()

Ranking methods A, B, B_POW and C need criteria ordered by importance C1> c2> C3 ...

Decision-Making methods:

  • topsis()
  • wsm()
  • wpm()
  • waspas(lambda=0.5)

Properties

  • pretty_original(tablefmt='psql')
  • pretty_normalized(tablefmt='psql')
  • pretty_weighted(tablefmt='psql')
  • pretty_Xis(tablefmt='psql')
  • pretty_decision(tablefmt='psql')

tablefmt: "psql" or "latex" or "html"

Quick Start for MCDA

from scikitmcda.mcda import MCDA
from scikitmcda.constants import MAX, MIN, ZScore_, MinMax_, Logistic_, Max_, Sum_, RootSumSquared_ 


mcda = MCDA()

mcda.dataframe([[90, 20, 86],
                [120, 8, 120],
                [70, 12, 90]],
                ["ALTERNATIVE A", "ALTERNATIVE B", "ALTERNATIVE C"],
                ["COST", "TIME", "SPEED"]
                )

print(mcda.pretty_original())
+----+----------------+--------+--------+---------+
|    | alternatives   |   COST |   TIME |   SPEED |
|----+----------------+--------+--------+---------|
|  0 | ALTERNATIVE A  |     90 |     20 |      86 |
|  1 | ALTERNATIVE B  |    120 |      8 |     120 |
|  2 | ALTERNATIVE C  |     70 |     12 |      90 |
+----+----------------+--------+--------+---------+

# defining weights and signals for decision by TOPSIS 
mcda.set_weights_manually([0.5, 0.3, 0.2])
# or mcda.set_weights_by_entropy()

mcda.set_signals([MIN, MIN, MAX])
mcda.set_normalization_method(RootSumSquared_)
mcda.topsis()

print(mcda.pretty_normalized())
+----+----------------+----------+----------+----------+
|    | alternatives   |     COST |     TIME |    SPEED |
|----+----------------+----------+----------+----------|
|  0 | ALTERNATIVE A  | 0.54371  | 0.811107 | 0.497384 |
|  1 | ALTERNATIVE B  | 0.724947 | 0.324443 | 0.694024 |
|  2 | ALTERNATIVE C  | 0.422885 | 0.486664 | 0.520518 |
+----+----------------+----------+----------+----------+

print(mcda.pretty_weighted())
+----+----------------+----------+-----------+-----------+
|    | alternatives   |     COST |      TIME |     SPEED |
|----+----------------+----------+-----------+-----------|
|  0 | ALTERNATIVE A  | 0.271855 | 0.243332  | 0.0994768 |
|  1 | ALTERNATIVE B  | 0.362473 | 0.0973329 | 0.138805  |
|  2 | ALTERNATIVE C  | 0.211443 | 0.145999  | 0.104104  |
+----+----------------+----------+-----------+-----------+

print(mcda.pretty_Xis())
+-----+----------+-----------+-----------+
|     |     COST |      TIME |     SPEED |
|-----+----------+-----------+-----------|
| PIS | 0.211443 | 0.0973329 | 0.138805  |
| NIS | 0.362473 | 0.243332  | 0.0994768 |
+-----+----------+-----------+-----------+

print(mcda.pretty_decision())
+----+----------------+-------------+--------+
|    | alternatives   |   euclidian |   rank |
|----+----------------+-------------+--------|
|  0 | ALTERNATIVE C  |    0.945809 |      1 |
|  1 | ALTERNATIVE B  |    0.413933 |      2 |
|  2 | ALTERNATIVE A  |    0.35164  |      3 |
+----+----------------+-------------+--------+

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-mcda-0.21.11.tar.gz (9.4 kB view details)

Uploaded Source

Built Distribution

scikit_mcda-0.21.11-py3-none-any.whl (14.4 kB view details)

Uploaded Python 3

File details

Details for the file scikit-mcda-0.21.11.tar.gz.

File metadata

  • Download URL: scikit-mcda-0.21.11.tar.gz
  • Upload date:
  • Size: 9.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.22.0 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.5

File hashes

Hashes for scikit-mcda-0.21.11.tar.gz
Algorithm Hash digest
SHA256 00dec73e8c6a30e265a3596a56aa642c93f2ccf967c2f39110e30e9a798ebad2
MD5 90b068dabff9953662571bafd833cee9
BLAKE2b-256 067ea6493d560a0f9c2d23ad8f1a9e74d2e879bcde7af06f85cce1520cf589cd

See more details on using hashes here.

Provenance

File details

Details for the file scikit_mcda-0.21.11-py3-none-any.whl.

File metadata

  • Download URL: scikit_mcda-0.21.11-py3-none-any.whl
  • Upload date:
  • Size: 14.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.22.0 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.5

File hashes

Hashes for scikit_mcda-0.21.11-py3-none-any.whl
Algorithm Hash digest
SHA256 09d7920e8407a3a647245d6692ad26fc241997c7135e95d4cfb75636500767b9
MD5 fdfa391f01d6264a644475a19b220f4f
BLAKE2b-256 6c9e432f47269b293164fd8579dc06380175fc71f261bda41d1aad4da39e480d

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page