Skip to main content

Library for Multi-criteria Decision Aid Methods

Project description

scikit-mcda

It is a python library made to provide multi-criteria decision aid for developers and operacional researchers.

Scikit-mcda provides an easy way to apply several popular decision-making methods. It can be used as part of your development or for analytical experiments using notebooks like Jupyter, colab or kaggle. The package is available on the Pypi allowing installation by pip install scikit-mcda command.

Some methods available:

DMUU

  • laplace, hurwicz, maximax, maximin, minimax-regret ...

MCDA

  • Weighted Sum Model (WSM), Weighted Product Model (WPM) , Weighted Aggregated Sum Product Assessment (WASPAS), Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) ...

Definition of criteria weights

  • Manually, Entropy, Ranking Methods ...

Nomalization

  • Z score, MinMax, Logistic, Max, Sum and RootSumSquared

Scikit-mcda is free to use for personal, commercial and academic projects, always respecting the terms of the Apache 2.0 License. Do not forget to refer to this Library when it is used in your experiments, lectures, presentations, classes and research papers. The reference must follow this citation format.

(HORTA, 2021)

HORTA, Antonio (2021). Scikit-mcda: The Python library for multi-criteria decision aid. 
Version 0.21. [opensource], 17 jan. 2021. Available in: https://gitlab.com/cybercrafter/scikit-mcda. 
Acessed in: 17 jan. 2021.

It's a project made by Cybercrafter® ajhorta@cybercrafter.com.br

Module for Decision-making Under Uncertainty (DMUU)

DMUU: Class Module for Decision-making Under Uncertainty

Attributes:

df_original = DataFrame
df_calc = DataFrame
decision = {"alternative":,
            "index":,
            "value": ,
            "criteria": ,
            "result": ,
            "type_dm": "DMUU",
            "hurwicz_coeficient":}

Criteria Methods:

  • maximax()
  • maximin()
  • laplace()
  • minimax_regret()
  • hurwicz(coef)

Properties

  • pretty_original(tablefmt='psql')
  • pretty_calc(tablefmt='psql')
  • pretty_decision(tablefmt='psql')

tablefmt: "psql" or "latex" or "html"

Methods:

  • dataframe(alt_data, alt_labels=[], state_labels=[])
  • decision_making(dmuu_criteria_list=[])

Quick Start for DMUU

from scikitmcda.dmuu import DMUU

# Defining labels for Alternatives and States")

dmuu = DMUU()

dmuu.dataframe([[5000, 2000, 100],
                [50, 50, 500]],
                ["ALT_A", "ALT_B"],
                ["STATE A", "STATE B", "STATE C"]
                )

print(dmuu.pretty_original())
+----+----------------+-----------+-----------+-----------+
|    | alternatives   |   STATE A |   STATE B |   STATE C |
|----+----------------+-----------+-----------+-----------|
|  0 | ALT_A          |      5000 |      2000 |       100 |
|  1 | ALT_B          |        50 |        50 |       500 |
+----+----------------+-----------+-----------+-----------+

# Specifying the criteria method

dmuu.minimax_regret()

print(dmuu.pretty_calc())
+----+----------------+-----------+-----------+-----------+------------------+
|    | alternatives   |   STATE A |   STATE B |   STATE C | minimax-regret   |
|----+----------------+-----------+-----------+-----------+------------------|
|  0 | ALT_A          |      5000 |      2000 |       100 | (400, 1)         |
|  1 | ALT_B          |        50 |        50 |       500 | (4950, 0)        |
+----+----------------+-----------+-----------+-----------+------------------+

print(dmuu.pretty_decision())
+---------------+---------+---------+----------------+-------------------------------+-----------+----------------------+
| alternative   |   index |   value | criteria       | result                        | type_dm   | hurwicz_coeficient   |
|---------------+---------+---------+----------------+-------------------------------+-----------+----------------------|
| ALT_A         |       0 |     400 | minimax-regret | {'ALT_A': 400, 'ALT_B': 4950} | DMUU      |                      |
+---------------+---------+---------+----------------+-------------------------------+-----------+----------------------+

# Many crietria methods

dmuu.decision_making([dmuu.maximax(), dmuu.maximin(), dmuu.hurwicz(0.8), dmuu.minimax_regret()])

print(dmuu.pretty_calc())
+----+----------------+-----------+-----------+-----------+------------------+-----------+-----------+------------------+
|    | alternatives   |   STATE A |   STATE B |   STATE C | minimax-regret   | maximax   | maximin   | hurwicz          |
|----+----------------+-----------+-----------+-----------+------------------+-----------+-----------+------------------|
|  0 | ALT_A          |      5000 |      2000 |       100 | (400, 1)         | (5000, 1) | (100, 1)  | (4020.0, 1, 0.8) |
|  1 | ALT_B          |        50 |        50 |       500 | (4950, 0)        | (500, 0)  | (50, 0)   | (410.0, 0, 0.8)  |
+----+----------------+-----------+-----------+-----------+------------------+-----------+-----------+------------------+

print(dmuu.pretty_decision())
+---------------+---------+---------+----------------+-----------------------------------+-----------+----------------------+
| alternative   |   index |   value | criteria       | result                            | type_dm   | hurwicz_coeficient   |
|---------------+---------+---------+----------------+-----------------------------------+-----------+----------------------|
| ALT_A         |       0 |    5000 | maximax        | {'ALT_A': 5000, 'ALT_B': 500}     | DMUU      |                      |
| ALT_A         |       0 |     100 | maximin        | {'ALT_A': 100, 'ALT_B': 50}       | DMUU      |                      |
| ALT_A         |       0 |    4020 | hurwicz        | {'ALT_A': 4020.0, 'ALT_B': 410.0} | DMUU      | 0.8                  |
| ALT_A         |       0 |     400 | minimax-regret | {'ALT_A': 400, 'ALT_B': 4950}     | DMUU      |                      |
+---------------+---------+---------+----------------+-----------------------------------+-----------+----------------------+

dmuu.calc_clean()
print(dmuu.pretty_calc())
+----+----------------+-----------+-----------+-----------+
|    | alternatives   |   STATE A |   STATE B |   STATE C |
|----+----------------+-----------+-----------+-----------|
|  0 | ALT_A          |      5000 |      2000 |       100 |
|  1 | ALT_B          |        50 |        50 |       500 |
+----+----------------+-----------+-----------+-----------+

Module for Multi-Criteria Decision Aid (MCDA)

MCDA: Class Module for Multi-Criteria Decision-Aid

Attributes:

  • df_original
  • weights
  • signals
  • df_normalized
  • df_weighted
  • df_pis
  • df_nis
  • df_distances
  • df_decision

MCDA basis methods:

  • dataframe(alt_data, alt_labels=[], state_labels=[])
  • set_signals([MIN, MIN, MAX])

Normalization constants: ZScore_, MinMax_, Logistic_, Max_, Sum_, RootSumSquared_

MCDA weights determination methods:

  • set_weights_manually([])
  • set_weights_by_entropy(normalization_method_for_entropy=Default)
  • set_weights_by_ranking_A()
  • set_weights_by_ranking_B()
  • set_weights_by_ranking_B_POW(default=0)
  • set_weights_by_ranking_C()

Ranking methods A, B, B_POW and C need criteria ordered by importance C1> c2> C3 ...

Decision-Making methods:

  • topsis(normalization_method=RootSumSquared_)
  • wsm(normalization_method=None)
  • wpm(normalization_method=None)
  • waspas(lambda=0.5, normalization_method=None)

Properties

  • pretty_original(tablefmt='psql')
  • pretty_normalized(tablefmt='psql')
  • pretty_weighted(tablefmt='psql')
  • pretty_Xis(tablefmt='psql')
  • pretty_decision(tablefmt='psql')

tablefmt: "psql" or "latex" or "html"

Quick Start for MCDA

from scikitmcda.mcda import MCDA
from scikitmcda.constants import MAX, MIN, ZScore_, MinMax_, Logistic_, Max_, Sum_, RootSumSquared_ 


mcda = MCDA()

mcda.dataframe([[90, 20, 86],
                [120, 8, 120],
                [70, 12, 90]],
                ["ALTERNATIVE A", "ALTERNATIVE B", "ALTERNATIVE C"],
                ["COST", "TIME", "SPEED"]
                )

print(mcda.pretty_original())
+----+----------------+--------+--------+---------+
|    | alternatives   |   COST |   TIME |   SPEED |
|----+----------------+--------+--------+---------|
|  0 | ALTERNATIVE A  |     90 |     20 |      86 |
|  1 | ALTERNATIVE B  |    120 |      8 |     120 |
|  2 | ALTERNATIVE C  |     70 |     12 |      90 |
+----+----------------+--------+--------+---------+

# defining weights and signals for decision by TOPSIS 
mcda.set_weights_manually([0.5, 0.3, 0.2])
# or mcda.set_weights_by_entropy()

mcda.set_signals([MIN, MIN, MAX])
mcda.topsis()

print(mcda.pretty_normalized())
+----+----------------+----------+----------+----------+
|    | alternatives   |     COST |     TIME |    SPEED |
|----+----------------+----------+----------+----------|
|  0 | ALTERNATIVE A  | 0.54371  | 0.811107 | 0.497384 |
|  1 | ALTERNATIVE B  | 0.724947 | 0.324443 | 0.694024 |
|  2 | ALTERNATIVE C  | 0.422885 | 0.486664 | 0.520518 |
+----+----------------+----------+----------+----------+

print(mcda.pretty_weighted())
+----+----------------+----------+-----------+-----------+
|    | alternatives   |     COST |      TIME |     SPEED |
|----+----------------+----------+-----------+-----------|
|  0 | ALTERNATIVE A  | 0.271855 | 0.243332  | 0.0994768 |
|  1 | ALTERNATIVE B  | 0.362473 | 0.0973329 | 0.138805  |
|  2 | ALTERNATIVE C  | 0.211443 | 0.145999  | 0.104104  |
+----+----------------+----------+-----------+-----------+

print(mcda.pretty_Xis())
+-----+----------+-----------+-----------+
|     |     COST |      TIME |     SPEED |
|-----+----------+-----------+-----------|
| PIS | 0.211443 | 0.0973329 | 0.138805  |
| NIS | 0.362473 | 0.243332  | 0.0994768 |
+-----+----------+-----------+-----------+

print(mcda.pretty_decision())
+----+----------------+-------------+--------+
|    | alternatives   |   euclidian |   rank |
|----+----------------+-------------+--------|
|  0 | ALTERNATIVE C  |    0.945809 |      1 |
|  1 | ALTERNATIVE B  |    0.413933 |      2 |
|  2 | ALTERNATIVE A  |    0.35164  |      3 |
+----+----------------+-------------+--------+

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-mcda-0.21.13.tar.gz (9.7 kB view details)

Uploaded Source

Built Distribution

scikit_mcda-0.21.13-py3-none-any.whl (14.7 kB view details)

Uploaded Python 3

File details

Details for the file scikit-mcda-0.21.13.tar.gz.

File metadata

  • Download URL: scikit-mcda-0.21.13.tar.gz
  • Upload date:
  • Size: 9.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.22.0 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.5

File hashes

Hashes for scikit-mcda-0.21.13.tar.gz
Algorithm Hash digest
SHA256 00c64e5f5ca2da29018a7a2a072d792a0955c816c08042ac11a598692d2debb1
MD5 d6331d677fa298a8614bd9cf22b4d5cc
BLAKE2b-256 449ef7a364458df902a401e7bad981d409778b56eeb107184d67878745ca14c7

See more details on using hashes here.

Provenance

File details

Details for the file scikit_mcda-0.21.13-py3-none-any.whl.

File metadata

  • Download URL: scikit_mcda-0.21.13-py3-none-any.whl
  • Upload date:
  • Size: 14.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.22.0 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.5

File hashes

Hashes for scikit_mcda-0.21.13-py3-none-any.whl
Algorithm Hash digest
SHA256 1fe1701e37194c49b59185ea69a1a7054e77198b9a12732d047cb6bf9908f6d5
MD5 16c385acda24c9f1b5ac234a2453f617
BLAKE2b-256 0371447c4c1927b3e3bec98431252aa84c25b5595261a643e19943217aeba1a0

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page