scevow: Excellent optimization of variant function mapping through weighted random walks at single-cell resolution
Project description
scevow
scevow: Excellent optimization of variant function mapping through weighted random walks at single-cell resolution
scevow: 通过单细胞分辨率下的加权随机游走对突变功能映射进行优化
1. 介绍
2. 上传
upload
test
python3 -m build
twine check dist/*
twine upload --repository testpypi dist/*
production
python3 -m build
twine check dist/*
twine upload dist/*
3. 使用
vim ~/.bashrc
export OMP_NUM_THREADS=1
export OPENBLAS_NUM_THREADS=1
source ~/.bashrc
test
pip3 install -r requirements.txt -i http://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com
pip3 install scLift -i https://test.pypi.org/simple/
production
pip3 install scLift
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
sclift-0.0.56.tar.gz
(61.3 kB
view details)
Built Distribution
scLift-0.0.56-py3-none-any.whl
(76.0 kB
view details)
File details
Details for the file sclift-0.0.56.tar.gz
.
File metadata
- Download URL: sclift-0.0.56.tar.gz
- Upload date:
- Size: 61.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9d7a5367d113d9190ba3e272f47749bd4af9bed1ddb0d6764764c198bafc1cd8 |
|
MD5 | 73e7d7dfaeec60b2bf5e1ffb23c7f6d7 |
|
BLAKE2b-256 | fd6d8383d53eb62a052fed0658074c3e4e27588cb18744ebb17ec019cb20c217 |
File details
Details for the file scLift-0.0.56-py3-none-any.whl
.
File metadata
- Download URL: scLift-0.0.56-py3-none-any.whl
- Upload date:
- Size: 76.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 04153f1badf331c22ed1e78a27f5a1dd97ff500893ea652007b2be18fa209f4e |
|
MD5 | c8ceac613bee97590264660474a8fe5a |
|
BLAKE2b-256 | 60907245094fd29e60d2f8f93245b8463890c493e646ceb213add300ecb0df3e |