The package computes point estimates and prediction intervals for Synthetic Control methods as proposed in Cattaneo, Feng, and Titiunik (2021).
Project description
SCPI_PKG
The scpi_pkg
package provides Python implementations of estimation and inference procedures for Synthetic Control methods.
Authors
Matias D. Cattaneo (cattaneo@princeton.edu)
Yingjie Feng (fengyj@sem.tsinghua.edu.cn)
Filippo Palomba (fpalomba@princeton.edu)
Rocio Titiunik (titiunik@princeton.edu)
Website
https://nppackages.github.io/scpi/
Installation
To install/update use pip
pip install scpi_pkg
Usage
from from scpi_pkg.scdata import scdata
from scpi_pkg.scest import scest
from scpi_pkg.scpi import scpi
from scpi_pkg.scplot import scplot
- Replication: Germany reunification example.
Dependencies
- cvxpy (>= 1.1.18)
- dask (>= 2021.04.0)
- nlopt (>= 2.7.0)
- numpy (>= 1.20.1)
- pandas (>= 1.2.4)
- plotnine (>= 0.8.0)
- scikit-learn (>= 0.24.1)
- scipy (>= 1.7.1)
- statsmodels (>= 0.12.2)
References
For overviews and introductions, see nppackages website.
Software and Implementation
- Cattaneo, Feng, Palomba, and Titiunik (2022) scpi: Uncertainty Quantification for Synthetic Control Estimators.
Technical and Methodological
-
Cattaneo, Feng, and Titiunik (2021): Prediction Intervals for Synthetic Control Methods.
Journal of the American Statistical Association. -
Cattaneo, Feng, Palomba, and Titiunik (2022): Uncertainty Quantification in Synthetic Controls with Staggered Treatment Adoption, working paper.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.