Skip to main content

A library for converting any text (xml, html, plain text, stdout, etc) to python datatypes

Project description

Hatch project Documentation Status CI License Version Python-versions codecov

Scrape-schema

This library is designed to write structured, readable, reusable parsers for unstructured text data (like html, stdout or any text) and is inspired by dataclasses

Motivation

Simplifying parsers support, where it is difficult to use or the complete absence of the API interfaces and decrease lines of code

Also structuring, data serialization and use as an intermediate layer for third-party serialization libraries: json, dataclasses, pydantic, etc


Features

  • python 3.8+ support
  • decrease lines of code for your parsers
  • partial support type-casting from annotations (str, int, float, bool, list, dict, Optional)
  • interacting with values with callbacks, filters, factories
  • logging to quickly find problems in extracted values
  • optional success-attempts parse values checker from fields objects
  • standardization, modularity* of structures-parsers *If you usage schema-structures and they are separated from the logic of getting the text (stdout output, HTTP requests, etc)

Build-in libraries parsers support:

  • re
  • bs4
  • selectolax(Modest)
  • parsel
  • selenium
  • playwright

Install

zero dependencies: regex, nested fields (and typing_extension if python < 3.11)

pip install scrape-schema

add bs4 fields

pip install scrape-schema[bs4]

add selectolax fields

pip install scrape-schema[selectolax]

add parsel fields

pip install scrape-schema[parsel]

add all fields

pip install scrape-schema[all]

Code comparison

Before scrape_schema: harder to maintain, change logic

import re
import pprint

TEXT = """
banana potato BANANA POTATO
-foo:10
-bar:20
lorem upsum dolor
192.168.0.1
"""


def parse_text(text: str) -> dict:
    if match := re.search(r"(\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})", text):
        ipv4 = match[1]
    else:
        ipv4 = None

    if matches := re.findall(r"(\d+)", text):
        max_digit = max(int(i) for i in matches)
    else:
        max_digit = None

    failed_value = bool(re.search(r"(ora)", text))

    if matches := re.findall(r"(\d+)", text):
        digits = [int(i) for i in matches]
        digits_float = [float(f'{i}.5') for i in matches]
    else:
        digits = None
        digits_float = None
    words_lower = matches if (matches := re.findall(r"([a-z]+)", text)) else None
    words_upper = matches if (matches := re.findall(r"([A-Z]+)", text)) else None

    return dict(ipv4=ipv4, max_digit=max_digit, failed_value=failed_value,
                digits=digits, digits_float=digits_float, 
                words_lower=words_lower, words_upper=words_upper)
    

if __name__ == '__main__':
    pprint.pprint(parse_text(TEXT), width=48, compact=True)
    # {'digits': [10, 20, 192, 168, 0, 1],
    #  'digits_float': [10.5, 20.5, 192.5, 168.5, 0.5,
    #                   1.5],
    #  'failed_value': False,
    #  'ip_v4': '192.168.0.1',
    #  'max_digit': 192,
    #  'words_lower': ['banana', 'potato', 'foo',
    #                  'bar', 'lorem', 'upsum',
    #                  'dolor'],
    #  'words_upper': ['BANANA', 'POTATO']}

After scrape_schema: easy change of logic, support, portability

from typing import List  # if you usage python3.8 - usage GenericAliases
import pprint

from scrape_schema import BaseSchema, ScField
from scrape_schema.fields.regex import ReMatch, ReMatchList

TEXT = """
banana potato BANANA POTATO
-foo:10
-bar:20
lorem upsum dolor
192.168.0.1
"""


class Schema(BaseSchema):
    ipv4: ScField[str, ReMatch(r"(\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})")]
    failed_value: ScField[bool, ReMatchList(r"(ora)", default=False)]
    digits: ScField[List[int], ReMatchList(r"(\d+)")]
    digits_float: ScField[List[float], ReMatchList(r"(\d+)", 
                                                     callback=lambda s: f"{s}.5")]
    words_lower: ScField[List[str], ReMatchList(r"([a-z]+)")]
    words_upper: ScField[List[str], ReMatchList(r"([A-Z]+)")]
    
    @property
    def max_digit(self) -> int:
        return max(self.digits)
    
    @property
    def all_words(self) -> List[str]:
        return self.words_lower + self.words_upper
    
if __name__ == '__main__':
    schema = Schema(TEXT)
    pprint.pprint(schema.dict(), compact=True)
    # {'all_words': ['banana', 'potato', 'foo', 'bar', 'lorem', 'upsum', 'dolor',
    #           'BANANA', 'POTATO'],
    #  'digits': [10, 20, 192, 168, 0, 1],
    #  'digits_float': [10.5, 20.5, 192.5, 168.5, 0.5, 1.5],
    #  'failed_value': False,
    #  'ipv4': '192.168.0.1',
    #  'max_digit': 192,
    #  'words_lower': ['banana', 'potato', 'foo', 'bar', 'lorem', 'upsum', 'dolor'],
    #  'words_upper': ['BANANA', 'POTATO']}

logging

In this project, logging to the DEBUG level is enabled by default.

To set up logger, you can get it by the name "scrape_schema"

import logging

logger = logging.getLogger("scrape_schema")
logger.setLevel(logging.INFO)
...

See more examples and documentation for get more information/examples


This project is licensed under the terms of the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scrape_schema-0.2.0.tar.gz (17.6 kB view details)

Uploaded Source

Built Distribution

scrape_schema-0.2.0-py3-none-any.whl (23.2 kB view details)

Uploaded Python 3

File details

Details for the file scrape_schema-0.2.0.tar.gz.

File metadata

  • Download URL: scrape_schema-0.2.0.tar.gz
  • Upload date:
  • Size: 17.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-httpx/0.24.0

File hashes

Hashes for scrape_schema-0.2.0.tar.gz
Algorithm Hash digest
SHA256 6b618a9809066921864a4195c15992a1a7ddbbdf229481032d916c45b9e3baa4
MD5 78014e2801fd08154670b9b4975fab68
BLAKE2b-256 4b6a332f3aa6dfd840f29ada17120237110373d3244aef18bd7897b4d4f8200a

See more details on using hashes here.

File details

Details for the file scrape_schema-0.2.0-py3-none-any.whl.

File metadata

File hashes

Hashes for scrape_schema-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 a2fbb3ccc249e992aacb93af39df38b5d71e5fe35ffb9f8727787ba34d14975a
MD5 ea039fb80ea979e135c0ad48c9ee95a7
BLAKE2b-256 e2e12137d60097a5ef9c5b221a902243d64e49853ac54712cb48a04f6d105811

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page