Skip to main content

An HPV integration sites detection tool for targeted capture sequencing data

Project description

Documentation Status License PyPI version

Host Downloads
PyPI Downloads

SearcHPV

An HPV integration point detection tool for targeted capture sequencing data

Introdution

  • SearcHPV detects HPV fusion sites on both human genome and HPV genome
  • SearcHPV is able to provide locally assembled contigs for each integration events. It will report at least one and at most two contigs for each integration sites. The two contigs will provide information captured for left and right sides of the event.

Getting started

  1. Required resources
  • Unix like environment
  1. Download and install Firstly, download and install the required resources.

    1. Download Anaconda >=4.11.0: https://docs.conda.io/projects/conda/en/latest/user-guide/install/linux.html#install-linux-silent

    2. Download the "environment.yaml" file under this repository

    3. Creat conda environment for SearcHPV:

      conda env create -f [your_path]/environment.yaml
      
      

      This command will automatically set up all the third-party tools and packages required for SearcHPV and install latest version of SearcHPV. The name of the environment is "searcHPV".

      You can check the packages and tools in this environment by:

      conda list -n searcHPV
      
      

      You can update the environment by:

      conda env update -f [your_path]/environment.yaml
      
      
  2. Usage

SearcHPV have four main steps. You could either run it start-to-finish or run it step-by-step.

  • Before running SearcHPV, active the conda environment:
conda activate searcHPV

If you are running commands in a bash script, start with:

#!/bin/bash
source ~/anaconda3/etc/profile.d/conda.sh;
conda activate searcHPV; 
#[searcHPV commands...]

Note: Please check your path of "conda.sh" if you did not install Anaconda in the home directory.

  • Usage of searcHPV:
searcHPV <options> ...
  • Standard options:
 -fastq1 <str>  sequencing data: fastq/fq.gz file
 -fastq2 <str>  sequencing data: fastq/fq.gz file
 -humRef <str>  human reference genome: fasta file
 -virRef <str>  HPV reference genome: fasta file
  • Optional options:
-h, --help      show this help message and exit
-window <int>   the length of region searching for informative reads, default=300
-output <str>   output directory, default "./"
-alignment      run the alignment step, step1
-genomeFusion   call the genome fusion points, step2
-assemble local assemble for each integration event, step3
-hpvFusion call the HPV fusion points, step4
-clusterWindow <int> the length of window of clustering integration sites,default=100
-gz             if fastq files are in gz format
-poly(dn) N     poly(n), n*d(A/T/C/G), will report low confidence if contig contains poly(n), default=20
-index          index the original human and virus reference files, default=False

Note: If you've already indexed the virus and human reference files for BWA, Samtools, Picard, you do not need to add the "-index" option, especailly when you are running for a batch of samples that share the same virus and human reference files and you do not want to spend time on indexing references every time running a sample. The commands for indexing the virus and human reference files:

#activate SearcHPV conda environment first to make sure using the correct versions of tools
ref = '[path_of_your_reference_file]'
bwa index {ref}
samtools faidx {ref}
picard CreateSequenceDictionary R={ref} O={ref.replace('.fa','.dict')
  1. Examples:

    1. Run it start-to-finish and submit a SBATCH job:

      #!/bin/bash
      #SBATCH --job-name=searcHPV
      #SBATCH --mail-user=wenjingu@umich.edu
      #SBATCH --mail-type=BEGIN,END
      #SBATCH --cpus-per-task=1
      #SBATCH --nodes=1
      #SBATCH --ntasks-per-node=8
      #SBATCH --mem=40gb
      #SBATCH --time=100:00:00
      #SBATCH --account=XXXXX
      #SBATCH --partition=standard
      #SBATCH --output=searcHPV.log
      #SBATCH --error=searcHPV.err
      source ~/anaconda3/etc/profile.d/conda.sh;
      conda activate searcHPV;      
      searcHPV -fastq1 Sample_81279.R1.fastq.gz -fastq2 Sample_81279.R2.fastq.gz -humRef hs37d5.fa -virRef HPV.fa -output /home/scratch/HPV_fusion/Sample_81279 -gz -index;
      
    2. Run it step-by-step:

      searchHPV -alignment -fastq1 Sample_81279.R1.fastq.gz -fastq2 Sample_81279.R2.fastq.gz -humRef hs37d5.fa -virRef HPV.fa -output /home/scratch/HPV_fusion/Sample_81279 -gz -index
      searchHPV -genomeFusion -fastq1 Sample_81279.R1.fastq.gz -fastq2 Sample_81279.R2.fastq.gz -humRef hs37d5.fa -virRef HPV.fa -output /home/scratch/HPV_fusion/Sample_81279 -gz
      searchHPV -assemble -fastq1 Sample_81279.R1.fastq.gz -fastq2 Sample_81279.R2.fastq.gz -humRef hs37d5.fa -virRef HPV.fa -output /home/scratch/HPV_fusion/Sample_81279 -gz
      searchHPV -hpvFusion -fastq1 Sample_81279.R1.fastq.gz -fastq2 Sample_81279.R2.fastq.gz -humRef hs37d5.fa -virRef HPV.fa -output /home/scratch/HPV_fusion/Sample_81279 -gz
      
      

      Note: if run it step-by-step, please make sure the output directories for all steps are the same.

Output

  1. Alignment: the marked dupliaction alignment bam file and customized reference genome.\
  2. Genome Fusion Point Calling: orignal callset, filtered callset, filtered clustered callset.\
  3. Assemble: supportive reads, contigs for each integration events (unfiltered).\
  4. HPV fusion Point Calling: alignment bam file for contigs againt human and HPV genome.\ Final outputs are under the folder "call_fusion_virus": summary of all the integration events : "HPVfusionPointContig.txt" contig sequences for all the integration events: "ContigsSequence.fa"

Citation

SearcHPV: a novel approach to identify and assemble human papillomavirus-host genomic integration events in cancer --- Accepted by Cancer

Contact

wenjingu@umich.edu

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

searcHPV-1.0.17.tar.gz (24.2 kB view details)

Uploaded Source

Built Distributions

searcHPV-1.0.17-py3.8.egg (44.4 kB view details)

Uploaded Source

searcHPV-1.0.17-py3-none-any.whl (24.5 kB view details)

Uploaded Python 3

File details

Details for the file searcHPV-1.0.17.tar.gz.

File metadata

  • Download URL: searcHPV-1.0.17.tar.gz
  • Upload date:
  • Size: 24.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.11.3 pkginfo/1.8.3 requests/2.28.1 requests-toolbelt/0.9.1 tqdm/4.64.1 CPython/3.8.8

File hashes

Hashes for searcHPV-1.0.17.tar.gz
Algorithm Hash digest
SHA256 35eefc033bc798b558fff35c2173fc48f01b8a8fc3b34329e18024b4351cd65a
MD5 ed4f6c717c308e9ddc8c0375b2d79a3b
BLAKE2b-256 4742dbec5dcdf548c35b298a4ba8774b4de7be4bfc3b76587daf9d19b547d796

See more details on using hashes here.

Provenance

File details

Details for the file searcHPV-1.0.17-py3.8.egg.

File metadata

  • Download URL: searcHPV-1.0.17-py3.8.egg
  • Upload date:
  • Size: 44.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.11.3 pkginfo/1.8.3 requests/2.28.1 requests-toolbelt/0.9.1 tqdm/4.64.1 CPython/3.8.8

File hashes

Hashes for searcHPV-1.0.17-py3.8.egg
Algorithm Hash digest
SHA256 a94ef7a4c91af4a99ab11172732a2c115c65297f7eeef0be5b4b0365cf90dd6e
MD5 bbeb4f17319a8e85944e3323232004cf
BLAKE2b-256 e4f7edfcad40d2b47de4b3fc056c43b181fbbb843db9e6f4763dbbc15e34fc33

See more details on using hashes here.

Provenance

File details

Details for the file searcHPV-1.0.17-py3-none-any.whl.

File metadata

  • Download URL: searcHPV-1.0.17-py3-none-any.whl
  • Upload date:
  • Size: 24.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.11.3 pkginfo/1.8.3 requests/2.28.1 requests-toolbelt/0.9.1 tqdm/4.64.1 CPython/3.8.8

File hashes

Hashes for searcHPV-1.0.17-py3-none-any.whl
Algorithm Hash digest
SHA256 09086d7bd2c87df3f3f368c2409a3332233482df1bb2c1e26cab469d40c419ad
MD5 f007d31363a677adfa7f6d33792171d8
BLAKE2b-256 3245bfe77903cffceb99742049cd554bc6d5a4538bbcfe8942d2bcc93ae02a78

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page