A package to compute different segmentation metrics for Medical images.
Project description
Segmentaion Metrics Package
This is a simple package to compute different metrics for Medical image segmentation(images with suffix .mhd
, .mha
, .nii
, .nii.gz
or .nrrd
), and write them to csv file.
Summary
To assess the segmentation performance, there are several different methods. Two main methods are volume-based metrics and distance-based metrics.
Metrics included
This library computes the following performance metrics for segmentation:
Voxel based metrics
- Dice (F-1)
- Jaccard
- Precision
- Recall
- False positive rate
- False negtive rate
- Volume similarity
Surface Distance based metrics (with spacing as default)
- Hausdorff distance
- Hausdorff distance 95% percentile
- Mean (Average) surface distance
- Median surface distance
- Std surface distance
Installation
$ pip install seg-metrics
Usage
At first, import the package:
import seg_metrics.seg_metrics as sg
Evaluate two batches of images with same filenames from two different folders
labels = [0, 4, 5 ,6 ,7 , 8]
gdth_path = 'data/gdth' # this folder saves a batch of ground truth images
pred_path = 'data/pred' # this folder saves the same number of prediction images
csv_file = 'metrics.csv' # results will be saved to this file and prented on terminal as well. If not set, results
# will only be shown on terminal.
metrics = sg.write_metrics(labels=labels[1:], # exclude background
gdth_path=gdth_path,
pred_path=pred_path,
csv_file=csv_file)
print(metrics) # a list of dictionaries which includes the metrics for each pair of image.
After runing the above codes, you can get a list of dictionaries metrics
which contains all the metrics. Also you can find a .csv
file containing all metrics in the same directory.
Evaluate two images
labels = [0, 4, 5 ,6 ,7 , 8]
gdth_file = 'data/gdth.mhd' # ground truth image full path
pred_file = 'data/pred.mhd' # prediction image full path
csv_file = 'metrics.csv'
metrics = sg.write_metrics(labels=labels[1:], # exclude background
gdth_path=gdth_file,
pred_path=pred_file,
csv_file=csv_file)
After runing the above codes, you can get a dictionary metrics
which contains all the metrics. Also you can find a .csv
file containing all metrics in the same directory.
Note:
- When evaluating one image, the returned
metrics
is a dictionary. - When evaluating a batch of images, the returned
metrics
is a list of dictionaries.
Evaluate two images with specific metrics
labels = [0, 4, 5 ,6 ,7 , 8]
gdth_file = 'data/gdth.mhd'
pred_file = 'data/pred.mhd'
csv_file = 'metrics.csv'
metrics = sg.write_metrics(labels=labels[1:], # exclude background if needed
gdth_path=gdth_file,
pred_path=pred_file,
csv_file=csv_file,
metrics=['dice', 'hd'])
# for only one metric
metrics = sg.write_metrics(labels=labels[1:], # exclude background if needed
gdth_path=gdth_file,
pred_path=pred_file,
csv_file=csv_file,
metrics='msd')
By passing the following parameters to select specific metrics.
- dice: Dice (F-1)
- jaccard: Jaccard
- precision: Precision
- recall: Recall
- fpr: False positive rate
- fnr: False negtive rate
- vs: Volume similarity
- hd: Hausdorff distance
- hd95: Hausdorff distance 95% percentile
- msd: Mean (Average) surface distance
- mdsd: Median surface distance
- stdsd: Std surface distance
For example:
labels = [1]
gdth_file = 'data/gdth.mhd'
pred_file = 'data/pred.mhd'
csv_file = 'metrics.csv'
metrics = sg.write_metrics(labels, gdth_file, pred_file, csv_file, metrics=['dice', 'hd95'])
dice = metrics['dice']
hd95 = metrics['hd95']
Evaluate two images in memory instead of disk
Note:
- The two images must be both numpy.ndarray or SimpleITK.Image.
- Input arguments are different. Please use
gdth_img
andpred_img
instead ofgdth_path
andpred_path
. - If evaluating
numpy.ndarray
, the defaultspacing
for all dimensions would be1.0
for distance based metrics. - If you want to evaluate
numpy.ndarray
with specific spacing, pass a sequence with the length of image dimension asspacing
.
labels = [0, 1, 2]
gdth_img = np.array([[0,0,1],
[0,1,2]])
pred_img = np.array([[0,0,1],
[0,2,2]])
csv_file = 'metrics.csv'
spacing = [1, 2]
metrics = sg.write_metrics(labels=labels[1:], # exclude background if needed
gdth_img=gdth_img,
pred_img=pred_img,
csv_file=csv_file,
spacing=spacing,
metrics=['dice', 'hd'])
# for only one metrics
metrics = sg.write_metrics(labels=labels[1:], # exclude background if needed
gdth_img=gdth_img,
pred_img=pred_img,
csv_file=csv_file,
spacing=spacing,
metrics='msd')
About the calculation of surface distance
The default surface distance is calculated based on fullyConnected border. To change the default connected type,
you can set argument fullyConnected
as False
as follows.
metrics = sg.write_metrics(labels=[1,2,3],
gdth_img=gdth_img,
pred_img=pred_img,
csv_file=csv_file,
fullyConnected=False)
In 2D image, fullyconnected means 8 neighbor points, while faceconnected means 4 neighbor points. In 3D image, fullyconnected means 26 neighbor points, while faceconnected means 6 neighbor points.
If this repository helps you in anyway, show your love ❤️ by putting a ⭐ on this project. I would also appreciate it if you cite the package in your publication. (Note: This package is NOT approved for clinical use and is intended for research use only. )
#Bibtex
@misc{Jingnan,
title = {A package to compute segmentation metrics: seg-metrics},
author = {Jingnan Jia},
url = {https://github.com/Ordgod/segmentation_metrics},
year = {2020},
doi = {10.5281/zenodo.3995075}
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for seg_metrics-1.0.31-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | d2a94d7c4134876555374b8a711269bf3ed9a1cd7384834bfdce357f836787af |
|
MD5 | 86306f4bc554c6ce6a48ee7500882a90 |
|
BLAKE2b-256 | 6e18d6048a776b50a4cac0edef1e0c4eea8221c36c4d1451f05b58bb568151fc |